List Decoding of Crisscross Error Patterns

Antonia Wachter-Zeh

Computer Science Department
Technion—Israel Institute of Technology

April 27, 2014

Coding Seminar Technion
We consider data stored in arrays (matrices) over finite fields.

Crisscross Errors

Crisscross errors corrupt rows and columns occur in several applications:

- memory arrays
- magnetic tapes
- FSK demodulation
- OFDM and FDM transmissions
Outline

1. Codes for Crisscross Errors
 - Cover Metric
 - Coding for Crisscross Errors
 - Known Results
 - Our Contribution

2. Johnson-like Upper Bound on the List Size

3. Efficient List Decoding Algorithm

4. Conclusion and Outlook
Outline

1. Codes for Crisscross Errors
 - Cover Metric
 - Coding for Crisscross Errors
 - Known Results
 - Our Contribution

2. Johnson-like Upper Bound on the List Size

3. Efficient List Decoding Algorithm

4. Conclusion and Outlook
Cover Metric

- **cover** $\text{cov}(A)$ of a matrix A: set of rows and columns such that all non-zero elements of the matrix are contained
- **cover weight** $\text{wt}_C(A)$: minimum cardinality of any cover

Example of 5×7 binary matrix:

$$A = \begin{bmatrix}
0 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
2 & 1 & 1 & 1 & 1 & 1 & 1 \\
3 & 1 & 1 & 1 & 1 & 1 & 1 \\
4 & 1 & 1 & 1 & 1 & 1 & 1 \\
5 & 1 & 1 & 1 & 1 & 1 & 1 \\
6 & 1 & 1 & 1 & 1 & 1 & 1 \\
7 & 1 & 1 & 1 & 1 & 1 & 1 \\
8 & 1 & 1 & 1 & 1 & 1 & 1 \\
9 & 1 & 1 & 1 & 1 & 1 & 1 \\
10 & 1 & 1 & 1 & 1 & 1 & 1 \\
11 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{bmatrix}$$

$\text{rk}(A) = 2$

$$\text{wt}_C(A) = 3$$

$$\text{wt}_H(a) = 5$$ (where a is representation of A as vector in \mathbb{F}_7^5)

$\Rightarrow \text{wt}_H(a) \geq \text{wt}_C(A) \geq \text{rk}(A)$
Cover Metric

- **cover** $\text{cov}(A)$ of a matrix A: set of rows and columns such that all non-zero elements of the matrix are contained
- **cover weight** $\text{wt}_C(A)$: minimum cardinality of any cover

Example of 5×7 binary matrix:

$$A = \begin{bmatrix}
0 & 1 & 1 & 1 & 1 \\
1 & & & & \\
2 & & 1 & 1 & \\
3 & & 1 & 1 & \\
4 & & & &
\end{bmatrix}$$

$\text{rk}(A) = 2$

$\text{wt}_H(a) = 5$ (where a is representation of A as vector in F_7^5)

$\implies \text{wt}_H(a) \geq \text{wt}_C(A) \geq \text{rk}(A)$
Cover Metric

- **cover** $\text{cov}(A)$ of a matrix A: set of rows and columns such that all non-zero elements of the matrix are contained
- **cover weight** $\text{wt}_C(A)$: minimum cardinality of any cover

Example of 5×7 binary matrix:

$$A = \begin{bmatrix}
0 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
2 & 1 & 1 & 1 & 1 & 1 & 1 \\
3 & 1 & 1 & 1 & 1 & 1 & 1 \\
4 & 1 & 1 & 1 & 1 & 1 & 1 \\
5 & 1 & 1 & 1 & 1 & 1 & 1 \\
6 & 1 & 1 & 1 & 1 & 1 & 1 \\
7 & 1 & 1 & 1 & 1 & 1 & 1 \\
8 & 1 & 1 & 1 & 1 & 1 & 1 \\
9 & 1 & 1 & 1 & 1 & 1 & 1 \\
10 & 1 & 1 & 1 & 1 & 1 & 1 \\
11 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{bmatrix}$$

Minimum covers:

$\{0, 8, 10\}$

$\text{rk}(A) = 2$

$\text{wt}_H(a) = 5$ (a is representation of A as vector in \mathbb{F}_7^5)

$\Rightarrow \text{wt}_H(a) \geq \text{wt}_C(A) \geq \text{rk}(A)$
Cover Metric

- **cover** $\text{cov}(A)$ of a matrix A: set of rows and columns such that all non-zero elements of the matrix are contained
- **cover weight** $\text{wt}_C(A)$: minimum cardinality of any cover

Example of 5×7 binary matrix:

$$A = \begin{bmatrix}
0 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
2 & 1 & 1 & 1 & 1 & 0 & 0 \\
3 & 1 & 1 & 1 & 1 & 0 & 0 \\
4 & 1 & 1 & 1 & 1 & 0 & 0 \\
\end{bmatrix}$$

Minimum covers:
$$\{0, 8, 10\} \text{ and } \{0, 2, 3\}$$
Cover Metric

- **cover** $\text{cov}(A)$ of a matrix A: set of rows and columns such that all non-zero elements of the matrix are contained
- **cover weight** $\text{wt}_C(A)$: minimum cardinality of any cover

Example of 5×7 binary matrix:

$$
A = \begin{bmatrix}
0 & 1 & 1 & 1 & 1 \\
1 & & & & \\
2 & & 1 & 1 & \\
3 & & 1 & 1 & \\
4 & & & & \\
\end{bmatrix}
$$

- $\text{wt}_C(A) = 3$
- $\text{rk}(A) = 2$
- $\text{wt}_H(a) = 5$ (a is representation of A as vector in F_{q^5})

$\implies \text{wt}_H(a) \geq \text{wt}_C(A) \geq \text{rk}(A)$
Coding for Crisscross Errors

- [Gabidulin, 1985], [Roth, 1991]: use rank-metric codes for crisscross error correction
 \[d_R(A, B) = \text{rk}(A - B) \]
- [W., 2013]: list decoding of rank-metric codes difficult
- [Roth, 1991]: construction of codes in cover metric based on codes in Hamming metric

Question: Can we do list decoding of crisscross errors in the cover metric?
Coding for Crisscross Errors

- [Gabidulin, 1985], [Roth, 1991]: use rank-metric codes for crisscross error correction
 \[d_R(A, B) = \text{rk}(A - B) \]

- [W., 2013]: list decoding of rank-metric codes difficult

- [Roth, 1991]: construction of codes in cover metric based on codes in Hamming metric

Question: Can we do list decoding of crisscross errors in the cover metric?
Codes in Cover Metric

$$(m \times n, M, d)_{q}^{C} \text{ code } C:$$

- set of matrices in $\mathbb{F}_{q}^{m \times n}$
- cardinality M
- minimum cover distance d

$$d = \min_{A, B \in C, A \neq B} d_{C}(A, B) \overset{\text{def}}{=} \min_{A, B \in C, A \neq B} \text{wt}_{C}(A - B).$$

- $[m \times n, k, d]_{q}^{C} \text{ code: } \mathbb{F}_{q}\text{-linear code in cover metric (a linear subspace of } \mathbb{F}_{q}^{m \times n} \text{ of dimension } k)$
- Singleton-like upper bound: $k \leq m(n - d + 1)$, when $m \geq n$

[Gabidulin, 1985], [Roth, 1991]
Codes in Cover Metric

$(m \times n, M, d)_q^C$ code \mathbb{C}:

- set of matrices in $\mathbb{F}_q^{m \times n}$
- cardinality M
- minimum cover distance d

$$d = \min_{A,B \in \mathbb{C}, \ A \neq B} d_C(A, B) \overset{\text{def}}{=} \min_{A,B \in \mathbb{C}, \ A \neq B} \text{wt}_C(A - B).$$

- $[m \times n, k, d]_q^C$ code: \mathbb{F}_q-linear code in cover metric (a linear subspace of $\mathbb{F}_q^{m \times n}$ of dimension k)

Singleton-like upper bound: $k \leq m(n - d + 1)$, when $m \geq n$ [Gabidulin, 1985], [Roth, 1991]
(Further) Known Results

<table>
<thead>
<tr>
<th>Reference</th>
<th>Result Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Gabidulin, Korzhik, 1972]</td>
<td>Introduced cover metric and codes of distance 2 and n</td>
</tr>
<tr>
<td>[Sidorenko, 1976]</td>
<td>Codes with cover distance 2, 3, 4 and n</td>
</tr>
<tr>
<td>[Roth, 1991]</td>
<td>(Optimal) construction based on codes in Hamming metric & unique decoding</td>
</tr>
<tr>
<td>[Roth, 1997]</td>
<td>Probabilistic decoding for a class of codes with smaller redundancy</td>
</tr>
<tr>
<td>[Lund, Gabidulin, Honary, 2000]</td>
<td>Optimal codes with cover distance 3 and $n - 1$</td>
</tr>
<tr>
<td>[Blaum, Bruck, 2000]</td>
<td>One-error-correcting codes and their (low-complexity) decoding</td>
</tr>
<tr>
<td>[Sidorenko, Bossert, Gabidulin, 2010]</td>
<td>GMD decoding of codes in cover metric</td>
</tr>
</tbody>
</table>
Let $m \geq n$ and define a code $C(C, m)$ over \mathbb{F}_q by the following set of $m \times n$ matrices:

\[
C \overset{\text{def}}{=} \left\{ \begin{pmatrix}
 c_0^{(0)} & c_1^{(m-1)} & \cdots & c_{n-1}^{(n)} \\
 c_0^{(1)} & c_1^{(0)} & \cdots & \vdots \\
 \vdots & c_1^{(1)} & \cdots & c_{n-1}^{(m-1)} \\
 c_0^{(n-1)} & \cdots & \cdots & c_{n-1}^{(0)} \\
 c_0^{(n)} & c_1^{(n-1)} & \cdots & c_{n-1}^{(1)} \\
 \vdots & \vdots & \cdots & \vdots \\
 c_0^{(m-1)} & \cdots & c_{n-2}^{(n)} & c_{n-1}^{(n-1)} \\
\end{pmatrix}
: c^{(i)} \in C, \forall i \in \langle m \rangle \right\},
\]

where C is an $(n, M_H, d)_q^H$ code.
Properties of this Construction and Unique Decoding

- error of cover weight t affects $\leq t$ positions of each diagonal
- $(n, M_H, d)^H_q$ code C with Hamming distance $d \geq 2t + 1$ can decode uniquely on each diagonal

Properties of $C(C, m)$

- $C(C, m)$ is an $(m \times n, (M_H)^m, d)^C_q$ code
- if C is a linear MDS code, then $C(C, m)$ is an optimal $[m \times n, m(n - d + 1), d]^C_q$ code
Properties of this Construction and Unique Decoding

- error of cover weight t affects $\leq t$ positions of each diagonal
- $(n, M_H, d)_q^H$ code C with Hamming distance $d \geq 2t + 1$ can decode uniquely on each diagonal

Properties of $C(C, m)$
- $C(C, m)$ is an $(m \times n, (M_H)^m, d)_q^C$ code
- if C is a linear MDS code, then $C(C, m)$ is an optimal $[m \times n, m(n - d + 1), d]_q^C$ code
Properties of this Construction and Unique Decoding

- Error of cover weight t affects $\leq t$ positions of each diagonal
- $(n, M_H, d)_q^H$ code C with Hamming distance $d \geq 2t + 1$ can decode uniquely on each diagonal

Properties of $C(C, m)$

- $C(C, m)$ is an $(m \times n, (M_H)^m, d)_q^C$ code
- if C is a linear MDS code, then $C(C, m)$ is an optimal $[m \times n, m(n - d + 1), d]_q^C$ code
Properties of this Construction and Unique Decoding

- error of cover weight t affects $\leq t$ positions of each diagonal
- $(n, M, d)_q^H$ code C with Hamming distance $d \geq 2t + 1$ can decode uniquely on each diagonal

Properties of $\mathbb{C}(C, m)$

- $\mathbb{C}(C, m)$ is an $(m \times n, (M_H)^m, d)_q^C$ code
- if C is a linear MDS code, then $\mathbb{C}(C, m)$ is an optimal $[m \times n, m(n - d + 1), d]_q^C$ code
Our Contribution: List Decoding of Crisscross Errors

Motivation: Efficient list decoding of crisscross errors in the rank metric seems to be hard!

Here: List Decoding in the Cover Metric

- Johnson-like upper bound on the list size (for any code in cover metric)
- Decoding algorithm for known code construction
- Decoder is based on the decoders of the constituent code

⇒ list decoding up to our bound
Outline

1. Codes for Crisscross Errors
 - Cover Metric
 - Coding for Crisscross Errors
 - Known Results
 - Our Contribution

2. Johnson-like Upper Bound on the List Size

3. Efficient List Decoding Algorithm

4. Conclusion and Outlook
Motivation: worst-case list size directly determines complexity of decoding algorithm.

Is **polynomial-time** list decoding in the cover metric possible?

Problem (Maximum List Size)

\[(m \times n, M, d)_{q}^{C} \text{ code } C\]

decoding radius \(\tau < d\)

Find (polynomial) upper bound on

\[\ell \overset{\text{def}}{=} \max_{R \in \mathbb{F}_{q}^{m \times n}} \left\{|C \cap B_{C}^{(\tau)}(R)|\right\}.\]
Let $q \geq 2$ and let an integer $\tau < d \leq n, m$ be given. Denote

$$\eta \overset{\text{def}}{=} \frac{(n + m)^2}{m \frac{q^n}{q^n - 1} + n \frac{q^m}{q^m - 1}}.$$

Then, for any $(m \times n, M, d)_q^C$ code C and any τ such that

$$\tau < \tau_C(q; \eta, d) \overset{\text{def}}{=} \eta - \sqrt{\eta(\eta - d)},$$

the list size ℓ is bounded from above by

$$\ell = \max_{R \in \mathbb{F}_q^{m \times n}} \left\{ |C \cap B_C^{(\tau)}(R)| \right\} \leq \ell_C(q; \eta, d, \tau) \overset{\text{def}}{=} \frac{d \eta}{\tau^2 - (2\tau - d)\eta},$$

where $B_C^{(\tau)}(R)$ denotes a ball around R of cover radius τ.
Corollary (Alphabet-free Johnson-like Bound)

For any \((m \times n, M, d)_q^C\) code \(C\) and any integer \(\tau\) such that

\[
\tau < \tau_C \overset{\text{def}}{=} n + m - \sqrt{(n + m)(n + m - d)},
\]

the list size \(\ell\) is bounded from above by

\[
\ell \leq \ell_C \overset{\text{def}}{=} \frac{(n + m)d}{\tau^2 - (2\tau - d)(n + m)}.
\]

Differences to Hamming & rank metric:

- compared to Hamming metric: replace \(n\) by \(n + m\) and \(q\) by a weighting of \(q^m\) and \(q^n\)
- in rank metric, there cannot exist a polynomial upper bound depending only on \(m, n, d\)
Figure: Normalized Johnson-like radius τ_C / n, as a function of the normalized minimum cover distance $\delta = d/n$.

Johnson-like Bound
1. Codes for Crisscross Errors
 - Cover Metric
 - Coding for Crisscross Errors
 - Known Results
 - Our Contribution

2. Johnson-like Upper Bound on the List Size

3. Efficient List Decoding Algorithm

4. Conclusion and Outlook
Brute-Force Exponential-Time List Decoding

Given:

\[R = \text{vecdiag}(r^{(0)}, \ldots, r^{(m-1)}) \]

\[
\begin{pmatrix}
 r_0^{(0)} & r_1^{(m-1)} & \ldots & r_{n-1}^{(n)} \\
 r_0^{(1)} & r_1^{(0)} & \ddots & \vdots \\
 \vdots & r_1^{(1)} & \ddots & r_{n-1}^{(m-1)} \\
 r_0^{(n-1)} & \ddots & \ddots & r_0^{(0)} \\
 r_0^{(n)} & r_1^{(n-1)} & \ddots & r_1^{(1)} \\
 \vdots & \ddots & \ddots & \vdots \\
 r_0^{(m-1)} & \ldots & r_{n-2}^{(n)} & r_{n-1}^{(n-1)}
\end{pmatrix}
\]

Task

Given \(R \) and the decoding radius \(\tau \), find all \(\Gamma_i \in \mathbb{C} \), \(i \in 0, \ldots, \ell_C - 1 \), such that \(\text{wt}_C(R - \Gamma_i) \leq \tau \).

(if possible, efficiently)
Brute-Force Exponential-Time List Decoding

Given:

\[R = \text{vecdiag}(r^{(0)}, \ldots, r^{(m-1)}) \]

\[\text{def} = \begin{pmatrix}
 r^{(0)}_0 & r^{(m-1)}_1 & \cdots & r^{(n)}_{n-1} \\
 r^{(1)}_0 & r^{(0)}_1 & \cdots & \vdots \\
 \vdots & r^{(1)}_1 & \cdots & r^{(m-1)}_{n-1} \\
 r^{(n-1)}_0 & \cdots & r^{(0)}_{n-1} \\
 r^{(n)}_0 & r^{(n-1)}_1 & \cdots & r^{(1)}_{n-1} \\
 \vdots & \vdots & \ddots & \vdots \\
 r^{(m-1)}_0 & \cdots & r^{(n-2)}_{n-1} & r^{(n-1)}_{n-1}
\end{pmatrix} \]

Task

Given \(R \) and the decoding radius \(\tau \), find all \(\Gamma_i \in \mathbb{C}, i \in 0, \ldots, \ell_C - 1 \), such that \(\text{wt}_C(R - \Gamma_i) \leq \tau \).

(if possible, efficiently)

\[r^{(i)} = c^{(i)} + e^{(i)} \]

- \(c^{(i)} \in \mathbb{C} \) is \((\tau_H, \ell_H)_H \)-list decodable
- If \(\text{wt}_C(E) = t \), then \(\text{wt}_H(e^{(i)}) \leq t \)
Brute-Force Exponential-Time List Decoding

Given:

\[R = \text{vecdiag}(r^{(0)}, \ldots, r^{(m-1)}) \]

\[
\begin{pmatrix}
 r^{(0)}_0 & r^{(m-1)}_1 & \cdots & r^{(n)}_{n-1} \\
 r^{(1)}_0 & r^{(0)}_1 & \cdots & \vdots \\
 \vdots & r^{(1)}_1 & \cdots & r^{(m-1)}_{n-1} \\
 r^{(n-1)}_0 & \cdots & r^{(0)}_{n-1} \\
 r^{(n)}_0 & r^{(n-1)}_1 & \cdots & \vdots \\
 \vdots & \vdots & \cdots & \vdots \\
 r^{(m-1)}_0 & \cdots & r^{(n)}_{n-2} & r^{(n-1)}_{n-1}
\end{pmatrix}
\]

Brute-force list decoding:

1. Choose \(\tau \leq \tau_H \).
2. List decode each diagonal of \(R \) in \(C \) in Hamming metric up to \(\tau \leq \ell_H \) codewords for each diagonal.
3. Examine all \(\leq (\ell_H)^m \) matrices \(C \) and keep only those with \(\text{wt}_C(R - C) \leq \tau \).

\[\implies \text{Works, but has exponential time complexity.} \]
Lemma (Bound for Two Diagonals)

- Given $r^{(0)}, r^{(1)} \in \mathbb{F}_q^n$, let $R_2 = \text{vecdiag}(r^{(0)}, r^{(1)}) \in \mathbb{F}_q^{m \times n}$,
- let C be a $(n, M_H, d)_q^H$ code,
- let $C_2 = \left\{ \text{vecdiag}(c^{(0)}, c^{(1)}) : c^{(0)}, c^{(1)} \in C \right\} \subseteq \mathbb{F}_q^{m \times n}$,
- let $\eta_2 = (n + m)(q^2 - 1)/q^2$ and let $\ell_C(q; \eta_2, d, \tau)$ be defined as in our bound with η_2.

Then, for any $\tau < \tau_C(q; \eta_2, d)$:

$$|C_2 \cap B_C^{(\tau)}(R_2)| \leq \ell_C(q; \eta_2, d, \tau),$$

where $B_C^{(\tau)}(R_2)$ denotes a ball of cover radius τ around R_2.

Note: $\tau_C(q; \eta_2, d) \geq \tau_C(q; \eta_0, d)$, where $\eta_0 = n + m$.
Polynomial-Time List Decoding Idea

Given:
\[R = \text{vecdiag}(r^{(0)}, \ldots, r^{(m-1)}) \]

\[
\begin{pmatrix}
 r_0^{(0)} & r_1^{(m-1)} & \cdots & r_n^{(n)} \\
 r_0^{(1)} & r_1^{(0)} & \ddots & \vdots \\
 \vdots & r_1^{(1)} & \ddots & r_{n-1}^{(m-1)} \\
 r_0^{(n-1)} & \vdots & \ddots & r_{n-1}^{(0)} \\
 r_0^{(n)} & r_1^{(n-1)} & \cdots & r_{n-1}^{(1)} \\
 \vdots & \ddots & \ddots & \vdots \\
 r_0^{(m-1)} & \cdots & r_{n-2}^{(n)} & r_{n-1}^{(n-1)}
\end{pmatrix}
\]

Task

Given \(R \) and the decoding radius \(\tau \), find all \(\Gamma_i \in \mathbb{C}, \ i \in 0, \ldots, \ell_C - 1 \), efficiently such that \(\text{wt}_C(R - \Gamma_i) \leq \tau \).

\[r^{(i)} = c^{(i)} + e^{(i)} \]

- \(c^{(i)} \in \mathcal{C} \) is \((\tau_{H}, \ell_{H})^{H}\)-list decodable
- If \(\text{wt}_C(E) = t \), then \(\text{wt}_H(e^{(i)}) \leq t \)
Polynomial-Time List Decoding Idea

Given:
\[
R = \text{vecdiag}(r^{(0)}, \ldots, r^{(m-1)})
\]

Efficient list decoding:

1. Choose \(\tau \leq \min\{\tau_H, \lceil \tau_C \rceil - 1\} \)
2. List decode each diagonal of \(R \) \(\leq \ell_H \) codewords for each diagonal
3. Examine all \(\leq (\ell_H)^2 \) matrices \(C_2 \) with two (fixed) non-zero diagonals; keep only those with \(\text{wt}_C(R - C_2) \leq \tau \) \(\leq \ell_C \) matrices
4. add another diagonal and examine all \(\leq \ell_H \cdot \ell_C \) matrices \(\leq \ell_C \) matrices
5. ...

\[= \Rightarrow \text{has polynomial time complexity!} \]
Decoding Algorithm

Input: $R = \text{vecdiag}(r^{(0)}, r^{(1)}, \ldots, r^{(m-1)}) \in \mathbb{F}_q^{m \times n}$

parameters of constituent code C: q, n, d, τ_H

integer τ with $\tau < \min\{\tau_H, \lceil \tau_C \rceil - 1\}$

Initialize: $\mathcal{L}^C \leftarrow \emptyset$, $\mathcal{L}^C_i \leftarrow \emptyset$, $\forall i \in \langle m \rangle$

for $i = 0$ to $m - 1$ do

$\mathcal{L}_i^H = \{e_0^{(i)}, e_1^{(i)}, \ldots, e_{\ell_i}^{(i)}\} \leftarrow \text{ListDecodingConstituent}(C; r^{(i)}; \tau)$

if $\mathcal{L}_i^H = \emptyset$ then

return $\mathcal{L}^C = \emptyset$

foreach $e^{(0)} \in \mathcal{L}_0^H$ do

$\mathcal{L}_0^C \leftarrow \mathcal{L}_0^C \cup \{\text{vecdiag}(e^{(0)})\}$

for $i = 1$ to $m - 1$ do

foreach $\text{vecdiag}(e^{(0)}, \ldots, e^{(i-1)}) \in \mathcal{L}_i^C$ do

foreach $e^{(i)} \in \mathcal{L}_i^H$ do

$E \leftarrow \text{vecdiag}(e^{(0)}, \ldots, e^{(i-1)}, e^{(i)})$

if $\text{wt}_C(E) \leq \tau$ then

$\mathcal{L}_i^C \leftarrow \mathcal{L}_i^C \cup \{E\}$

if $\mathcal{L}_i^C = \emptyset$ then

return $\mathcal{L}^C = \emptyset$

end if

end if

end if

end foreach

$\mathcal{L}^C \leftarrow \mathcal{L}_m^C$

Output: List of error matrices: \mathcal{L}^C

← list decoding radius τ

← list decoding of constituent code

← sort out matrices

← output list
List decoding: Summary

Theorem (List Decoding)

Let the code $C(C, m)$ be as before, suppose C is $(\tau_H, \ell_H)^H$-list decodable with complexity $D_H(C)$, let $R \in \mathbb{F}^m_{q \times n}$ be given.

Then, for any integer $\tau \leq \min\{\tau_H, \lceil \tau_C \rceil - 1\}$, our algorithm returns all $E \in \mathbb{F}^m_{q \times n}$ such that

$$\text{wt}_C(E) \leq \tau \text{ and } (R - E) \in C.$$

The complexity of this decoder is

$$O(m \cdot D_H(C) + m \cdot \ell_H \cdot \ell_C \cdot W_C(m, n)),$$

and the list size is at most ℓ_C.

Cover weight calculation $W_C(m, n) = O((n + m)n^2)$
Outline

1. Codes for Crisscross Errors
 - Cover Metric
 - Coding for Crisscross Errors
 - Known Results
 - Our Contribution

2. Johnson-like Upper Bound on the List Size

3. Efficient List Decoding Algorithm

4. Conclusion and Outlook
Conclusion and Outlook

Contributions

- Johnson-like upper bound in cover metric
 - shows that list decoding is possible in cover metric
 - holds for any $m \times n$ code with cover distance d
- polynomial-time list decoding of a known code construction
 - decodes up to our bound

Open Questions

- How to decrease the complexity of our decoder?
- How to list decode errors in cover metric with MRD codes?
- Other list-decodable codes with small field size?
- New applications?
Conclusion and Outlook

Contributions

- Johnson-like upper bound in cover metric
 \[\Rightarrow \text{shows that list decoding is possible in cover metric} \]
 \[\Rightarrow \text{holds for any } m \times n \text{ code with cover distance } d \]
- Polynomial-time list decoding of a known code construction
 \[\Rightarrow \text{decodes up to our bound} \]

Open Questions

- How to decrease the complexity of our decoder?
- How to list decode errors in cover metric with MRD codes?
- Other list-decodable codes with small field size?
- New applications?
Thank you...

...for your attention!