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notation: These notes are based on the Paper of Ben-Sasson, Kopparty and Radhakrishnan [1]
Define RSN,K to be the set of degree K - Reed-Solomon words on FN of degree K. (i.e., vectors of
length N that are evaluations of a univariate polynomial of degree at most K on the points of FN ).

Theorem 0.1. Fix integers u ≤ v ≤ m, and a prime power q. Let N = qm and K = qu. There is a
set of q(u+1)·m−v2 elements of RSN,K that all agree with some word w ∈ FN on qv points.

Taking u = δ · m and v = ρ · m, we get a super-polynomial number of codewords whenever

ρ <
√
δ. This implies we need agreement N

√
δ for efficient decoding. On the other direction, the

Johnson bound implies agreement N (1+δ)/2 suffices.

Definition 1 (Subspace Polynomials). V is linear subspace of dimension v in Fqm. The subspace
polynomial PV is defined as follows.

PV (X) ,
∏
a∈V

(X − a)

Claim 0.2. PV is of the form

Xqv +
v−1∑
i=0

αi ·Xqi

for αi ∈ Fqm.

Proof. (sketch) Look at functions X,Xq, . . . , Xqv as Fq-linear functions from V to Fqm . Show there
is dependence over Fqm .

Claim 0.3. There is a set U of at least q(u+1)·m−v2 subspace polynomials (of dimension v) that agree
on the top coefficients αu+1, . . . , αv−1.

Proof. Number of subspaces of dimension v is at least q(m−v)·v. There are qm·(v−u−1) choices for
these top coefficients. An averaging argument concludes.

Now, for this choice of αu+1, . . . , αv−1 define

P ∗(X) , Xqv +

v−1∑
i=u+1

αi ·Xqi

Define L , {P ∗ − PV |PV ∈ U}.
Note, for any P ∈ L.

• P has degree at most qu

• P and P∗ agree on at least qv points: Let P = P ∗ − PV Then

P ∗ − P = P ∗ − (P ∗ − PV ) = PV
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1 Observations on coefficients of subspace polynomials

Suppose n is prime.

Claim 1.1. When choosing a random d-dimensional subspace V . All non-zero values of a given
coefficient are obtained with same probability.

Proof. For a ∈ F∗qn a ∈ V , {a·v|v ∈ V }. a·V is a subspace of dim d different from V (when n is prime
and a 6= 1). We can partition the subspaces of dimension d into orbits of the form {a ·V }a∈F2n

. Call

c0(V ) the coefficient of X in PV . Note c0(V ) =
∏
v∈V \{0} v So c0(a·V ) =

∏
v∈V \{0} a·v = a2

d−1·c0(V ).

Note that raising to power 2d− 1 is a permutation of F∗2n . The argument for the other coefficients ci
is similar, by noticing that they are always equal to a symmetric polynomial in the non-zero elements
of the subspace.

Claim 1.2. Let f(X) = X2d +
∑d−1

i=0 ci · X2i be a linearized polynomial with coefficients in F2n.
Define an n× n matrix A(f) where the first row are the coefficients of P . The i’th row is a circular
shift of the i− 1’th row, where all elements are also squared. Then f is a subspace polynomial if and
only if the rank of the matrix A(f) is exactly n− d (it is always at least n− d).

Corollary 1.3. The subspace polynomials with {0, 1} coefficients are the linearized associates of the
factors of Xn − 1.
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