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Flash Memory

• Flash memory is a Non-Volatile Memory technology that is
both electrically programmable and electrically erasable.
• Programming is easy to perform on single cells. Erasure

can only be done on large blocks of cells.
• Charge is slowly injected into the cell over several

iterations.
• Common error factors: charge leakage and read

disturbance.
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Rank Modulation for Flash Memories

In rank modulation1 data is represented by permutations.

x = (x1, x2, . . . , xn) → σ = [σ(1), σ(2), . . . , σ(n)],

where xσ(1) < xσ(2) < . . . < xσ(n).

Example

x = (0.8,1.5,2.3,1) → σ = [1,4,2,3].

x1 < x4 < x2 < x3

1A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation for
flash memories,” IEEE Trans. on Inform. Theory, 2009.
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Why Rank Modulation?

• Better programming efficiency.

Example

Programming σ = [1,4,2,3]:

x = (0.1, , , )→ x = (0.1, , , 0.5)→

x = (0.1,1.2, ,0.5)→ x = (0.1,1.2,2,0.5).

• The ranking of the cell’s charge levels is more robust to
charge leakage.
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Kendall’s τ -Metric

Let Sn be the set of all permutations on n elements.

For σ, π ∈ Sn, the Kendall’s τ -distance, dK (σ, π), is the minimum
number of adjacent transpositions required to change σ into π.

Example

If σ = [3,2,4,1] and π = [2,1,3,4]:

σ = [3,2,4,1]→ [2,3,4,1]→ [2,3,1,4]→ [2,1,3,4] = π.

dK (σ, π) = 3.
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Kendall’s τ -Metric

dK (σ, π) = |{(i , j) : σ−1(i) < σ−1(j) ∧ π−1(i) > π−1(j)}|.

Example

σ = [3,2,4,1] and π = [2,1,3,4]

dK ([3,2,4,1], [2,1,3,4]) = |{(3,1), (3,2), (4,1)}| = 3.
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Why Kendall’s τ -Metric?

Small error corresponds to small Kendall’s τ -distance2.

x = (0.8,1.5,2.3,1) Error−−−→ y = (1.1,1.2,2.3,1).

↓ ↓

σ = [1,4,2,3] π = [4,1,2,3]

dK (σ, π) = 1.

2A. Jiang, M. Schwartz, and J. Bruck, “Correcting charge-constrained
errors in the rank-modulation scheme,” IEEE Trans. on Inform. Theory, 2010.
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Systematic Codes for Permutations

Definition
A code C ⊆ Sn is an (n, k) systematic code if for every σ ∈ Sk
there exists exactly one α ∈ C such that σ is a sub-permutation
of α. |C| = k !.

The number of redundancy symbols of an (n, k) systematic
code is r def

=n − k .
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Factoradic Representation

Definition
For a permutation σ ∈ Sn, the insertion vector
gσ = (gσ,1,gσ2 , . . . ,gσ,n−1) is defined by

gσ,i
def
=|{j : j < i + 1, σ−1(j) > σ−1(i + 1)}|, 1 ≤ i ≤ n − 1.

Example

If σ = [5,2,1,4,3] then gσ = (1,0,1,4). Conversely:

[1]→ [2,1]→ [2,1,3]→ [2,1,4,3]→ [5,2,1,4,3]

The mapping σ → gσ is a bijection of Sn into

Zn! = Z2 × Z3 × . . .× Zn.
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Metric Embedding

The Manhattan distance between x,y ∈ Zn!:

dM(x,y)def
=

n−1∑
i=1

|xi − yi |.

The Lee distance between x,y ∈ ZN
q :

dL(x,y)
def
=

N∑
i=1

min{|xi − yi |,q − |xi − yi |}.

Lemma (Jiang, Schwartz, and Bruck, 2010)

For every σ, π ∈ Sn and q > n

dK (σ, π) ≥ dM(gσ,gπ) ≥ dL(gσ,gπ)
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Known Constructions of Systematic Codes

• Using a greedy approach, Zhou et al.3 proved the
existence of an (n, k) systematic code with minimum
distance d and r = n − k ≤ d redundancy symbols.
• Using BCH codes over the factoradic representation, Zhou

et al. constructed an (n, k) systematic t-error-correcting
code, where n ≥ 6t + 5 and r ≤ 2t + 1.

3H. Zhou, M. Schwartz, A. Jiang, and J. Bruck, “Systematic error-correction
codes for rank modulation,” 2013
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Systematic Single-Error-Correcting Code

A perfect single-error-correcting code in Sn does not exist,
where n is a prime4.

In that case if C is an (n, k) single-error-correcting code then

k ! = |C| < (n − 1)! ⇒ n ≥ k + 2.

Zhou et al. constructed a (k + 2, k) systematic
single-error-correcting codes for all k ≥ 2.

4S. Buzaglo and T. Etzion, “Perfect permutations codes with the Kendall’s
τ -Metric,” 2013.

13



Systematic Single-Error-Correcting Code

Construction (Zhou et al., 2013)

Let m ∈ {k , k + 1} be a prime and define C as follows. For all
σ ∈ Sk , define α ∈ C where,

gα,i = gσ,i , 1 ≤ i ≤ k − 1

gα,k ≡
k∑

i=1

(2i − 1)σ(i) (mod m)

gα,k+1 ≡
k∑

i=1

(2i − 1)2σ(i) (mod m).

C is (k + 2, k) systematic single-error-correcting code.
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Multi-Permutations

A multi-setM = {vm1
1 , vm2

2 , · · · , vm`
` } is a collection of the

elements {v1, v2, . . . , v`} in which every vi appears mi times.

A multi-permutation onM is an ordering of the elements ofM.

Let S(M) be the set of all multi-permutations onM.

The Kendall’s τ can be extended to S(M).
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Systematic Codes and Multi-Permutations

LetMk ,r = {0k , k + 1, k + 2, . . . , k + r}.

For α ∈ Sk+r let αk 7→0 ∈ S(Mk ,r ) obtained from α by replacing
every element of {1,2, . . . , k} by 0.

Example

If α = [2,5,4,1,3,6] and k = 3 then αk 7→0 = [0,5,4,0,0,6].
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Systematic Codes and Multi-Permutations

For σ ∈ Sk , ρ ∈ S(Mk ,r ), denote by σ ∗ ρ the permutation in
Sk+r obtained by substituting σ in ρ.

Example

If ρ = [0,6,0,0,5,7,0] and σ = [2,4,1,3], then
σ ∗ ρ = [2,6,4,1,5,7,3].
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Systematic Codes and Multi-Permutations

An (n, k) systematic code C is equivalent to a mapping

φ : Sk → S(Mk ,n−k ).

If σ is a sub-permutation of α ∈ C then φ(σ) = αk 7→0 and
σ ∗ φ(σ) = α.

Lemma
For every σ, π ∈ Sk , ρ1, ρ2 ∈ S(Mk ,r )

dK (σ ∗ ρ1, σ ∗ ρ2) ≥ dK (σ, π) + dK (ρ1, ρ2).
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Construction of Systematic Codes

Ingredients:
1) Integers h1,h2, . . . ,hk−1, and Mt , s.t.

k−1∑
i=1

ei · hi (mod Mt), e ∈ Zk−1, ||e||1 ≤ t

are all distinct.
2) A code Cr ⊂ S(Mk ,r ) of size Mt and with minimum

Kendall’s τ -distance 2t .
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Construction of Systematic Codes

Recipe:
Let ρ0, ρ1, . . . , ρMt−1 be the Mt codewords in Cr .

Define C ⊂ Sk+r as follows.

C = {σ ∗ ρj : σ ∈ Sk ,

k−1∑
i=1

gσ,ihi ≡ j mod Mt}.

C is a (k + r , k) systematic t-error-correcting code.
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Proof

C is a (k + r , k) systematic code.

Let σ, π ∈ Sk and let ρj1 , ρj2 ∈ Cr s.t. σ ∗ ρj1 , π ∗ ρj2 ∈ C.

If dK (σ, π) ≥ 2t + 1 then

dK (σ ∗ ρj1 , π ∗ ρj2) ≥ 2t + 1.

We claim that if 1 ≤ dK (σ, π) ≤ 2t then j1 6= j2 and therefore

dK (σ ∗ ρj1 , π ∗ ρj2) ≥ dK (σ, π) + dK (ρj1 , ρj2) ≥ 2t + 1.
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Proof

1 ≤ dK (σ, π) ≤ 2t ⇒ 1 ≤ dL(gσ,gπ) ≤ 2t .

There exist e, f ∈ Zk−1, ||e||1, ||f||1 ≤ t , s.t.

gσ + e = gπ + f.

Assume to the contrary that j1 = j2, then

k−1∑
i=1

gσ,ihi ≡
k−1∑
i=1

gρ,ihi mod Mt

and
k−1∑
i=1

eihi ≡
k−1∑
i=1

fihi mod Mt

a contradiction.
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Example

Example (t=1)

Let k be integer and r = 2.
1) Let M1 = 2(k − 1) + 1 and let hi = i , 1 ≤ i ≤ k − 1. Then

the sums
∑k−1

i=1 eihi , ||e||1 ≤ 1, are all distinct modulo M1.
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Example Continues

Example (t=1)

2) Fix ρ ∈ S(Mk ,2) and consider the codes

Ce
2 = {γ ∈ S(Mk ,2) : dK (ρ, γ) ≡ 0 (mod 2)},

Co
2 = {γ ∈ S(Mk ,2) : dK (ρ, γ) ≡ 1 (mod 2)}.

The minimum distance of both Ce
2 and Co

2 is 2.
The size of either Ce

2 or Co
2 is at least

|S(Mk ,2)|
2

=
(k + 2)!

k ! · 2
=

(k + 2)(k + 1)
2

≥ 2(k−1)+1 = M1.

Then we can construct a (k + 2, k)-systematic
single-error-correcting code.
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Getting Ingredient 1

Theorem (Barg & Mazumdar, 2010)

Let q be a power of a prime and M = (qt+1 − 1)/(q − 1). Let

Mt =

{
t(t + 1)M, t is odd
t(t + 2)M, t is even

Then there exist integers h1,h2, . . . ,hq+1 s.t. for all e ∈ Zq+1,
||e||1 ≤ t , the sums

∑q+1
j=1 ejhj are all distinct modulo Mt .
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Getting Ingredient 2

Theorem (Sala, Gabris, & Dolecek, 2013)

Let M = qt+1−1
q−1 , where q =

∑`
i=2 mi − 1 is a power of a prime.

There exists a t-error-correcting code C ⊂ S(M) in the
Kendall’s τ -metric, whose size satisfies

|C| ≥

{ |S(M)|
t(t+1)M , t is odd
|S(M)|
t(t+2)M , t is even
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Example for t = 2

Example
Let k be an integer s.t. k − 2 is a power of a prime and let
r = 3.

1) Let M2 = 8((k − 2)3 − 1))/(k − 3) = 8((k − 2)2 + k − 1).
There exist h1,h2, . . . ,hk−1 s.t. the sums

∑k−1
i=1 eihi ,

||e||1 ≤ 2, are all distinct modulo M2.
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Example

2) There exists a single-error-correcting code CK ⊂ S(Mk ,3)

of size |CK | ≥
|S(Mk,3)|

2·3+1 . Fix ρ ∈ S(Mk ,3) and consider the
codes

Ce
3 = {γ ∈ CK : dK (ρ, γ) ≡ 0 (mod 2)},

Co
3 = {γ ∈ CK : dK (ρ, γ) ≡ 1 (mod 2)}.

The minimum distance of the codes Ce
3 and Co

3 is 4.
One of these codes must be of size at least

|CK |
2
≥
|S(Mk ,3)|

14
=

(k + 3)!
k ! · 14

=
(k + 3)(k + 2)(k + 1)

14
.

If k ≥ 113 then (k+3)(k+2)(k+1)
14 ≥ 8((k −2)2 + k −1) and we can

construct a (k + 3, k) systematic double-error-correcting code.
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The Number of Redundancy Symbols

Theorem
Let k be a sufficiently large integer, let t = k ε be an integer, and
let r = dµte. If {

µ > 1 + ε for 0 ≤ ε ≤ 1
µ > 1 + 1

ε for 1 < ε.

There exists a (k + r , k)-systematic t-error-correcting.
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Conclusion

• A construction for (k + r , k)-systematic t-error-correcting
codes, was presented.
• For most values of t , the construction provides less

redundancy symbols than the number of redundancy
symbols of the known constructions. In particular, for a
fixed t and for sufficiently large k the number of
redundancy symbols is r = t + 1.
• Do there exist codes with less redundancy symbols?
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The End!

Thank You!
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