Reed-Muller codes for
random errors and erasures

Based on:
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Reed-Muller code - RM(m,r)

@ Message:
coefficient vector of a polynomial

f(xi,...,xm) over [F; of degree < r

@ Encoding: evaluations of f:

f — (f(000),f(001),....f(111))

@ Distance: Hamming distance between any two
code words is = 2™

@ Note: codewords form a linear space over [,
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Generating matrix of Reed-Muller code:
codewords are linear combination of rows



Reed-Muller code - RM(m,r)

@ Message: coefficient vectors of a polynomial
f(xi,...,xm) over IF; of degree < r

@ Encoding: evaluations of f:

f = (f(000),f(001),....f(111))
® Minimum distance: d=2™"
@ Most studied linear algebraic code
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Why CS cares about RM codes!?



Why CS cares about RM codes!?

@ Low degree polynomials ubiquitous in TCS:
o lower bounds
@ derandomization
o PCP
@ Hardness amplification
@ List decoding
@ Algorithms
@ Property testing

@ Extractors
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Decoding RM codes

@ Decoding problem: decode corrupted codewords
o behavior well understood:
o : Efficient decoding up to half min. distance

o
List decoding radius < 2 - dist

@ Can we do better for random errors!?

o study of errors

@ Old open problem in coding theory:
@ How good are RM codes!?

® Do RM codes meet Shannon’s bounds for random errors and
erasures!?
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Error Model ¥ Channels

@ Binary Erasure Channel:
symbol is replaced with ! (erased) with probability p

@ Binary Symmetric Channel:
symbol is flipped with probability p

o : maximal rate that enables decoding w.h.p. (capacity of
channel) - best tradeoff between redundancy and robustness

@ BEC:R=1-p
@ BSCR=1-h(p) (h(x)=-xlog(x)-(l-x)log(]-x))

@ Major goal: design explicit codes that meet Shannon’s bound
(with efficient encoding and decoding)
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Average case behavior of RM

@ Do Reed-Muller codes meet Shannon’s bound?
l.e., can RM codes of rate R handle the same fraction of
errors/erasures that random codes of rate R handle.

@ Problem related to
@ Rank of random evaluation matrices
@ Spaces of tensors over [F;
@ Polynomial interpolation from noisy data
@ Sparse recovery
@ Learning
@ Polar codes

" R



Polar Codes

Introduced by 2009

Very similar to RM - messages are polynomials with respect to a
different monomial basis (different choice of rows from the
Serpiensky matrix)

Achieve capacity for all channels!

Due to strange basis (no simple description), Polar codes seem less
natural than RM codes, yet are still morally similar

It would be much nicer to work with RM codes rather than Polar!
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Results

BEC BSC

r =o(m) J V

r=m—0(\/m/|09(m)) v \/(# S O"S)
| i m %
5 ' \/ﬁ e
@ Note: minimum distance of RM(m,m-s) is 2°
@ Prior work: r=1 (folklore). r=2 ( '05)
o RM achieve

capacity for the BEC at constant Rate !



Figure 1. Regime of r for which RM(m, r) is known to achieve capacity for the BEC
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Figure 1: Regime of r for which RM(m, r) is known to achieve capacity for the BEC

Our results:

[Dum04, DS06 DumO06]:

Degree (r) of RM(m,r):

h" w1

' n/2 errors 2" 7 Merrorsfor ! = r/m (dlog d)©(leg M) errors

O(n*) time algo. assuming RM achieve capacity for all rates nl* o) time algo.
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Figure 3: Comparison with [ Dum04, DS06 DumO06]
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Reduction to rank of
submatrices

Questions about BEC (erasures) boil down to

|. High rate:ls a random set of columns (slightly less than number of
rows), of the generating matrix, linearly independent?

2. Low rate: Does a random set of columns (slightly more than
number of rows), of the generating matrix, span all other columns!?

We give positive answers which solve the BEC case for high and low
rate, respectively.

Very different from
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Generating Matrix of RM(4,2)
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Generating Matrix of RM(4,2)
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Parity Check Matrix

® H such thatvin Code iff Hy =0

@ H is generating matrix for the dual code
|

C ={u:u! vforallvinC}
o Fact RM(m,r) = RM(m,m-r-1)

@ l.e.,PC.M is also an evaluation matrix (monomials
Vs. points)



Reduction (high-rate)

@ Want to solve linear system
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Reduction (high-rate)

@ Want to solve linear system

0% 1l 0%
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@ Unique solution (unique decoding) iff corresponding sub-
matrix has full column-rank.
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Reduction (low-rate)
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Reduction (low-rate)

@ Need to decode message based on non-erased information.
Possible iff corresponding sub-matrix has full row-rank.
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Using the weight distribution

@ [heorem 5:Tighter bounds on weight distribution of RM
codes (based upon and improves )

#codewords of wt < 2m/2b =~ [RM(m,r)|(m°
@ Morally, weight distribution similar to random codes
@ [heorem 2: RM achieve capacity for BSC at low rate

@ Proof: Bounds on weight distribution imply code achieves
capacity (mimic proof that random codes achieve capacity)

@ This connection was already observed by ‘94
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Weight distribution

Theorem 5:Tighter bounds on weight distribution of RM codes (based upon and
improves )

bl r/m)P
#codewords of wt < 272" ~ |RM(m,r)|(/ )

|dea of Proof: f of small weight ¥ fis a biased polynomial

<zf very well approximated by few lower degree polynomials
<zf computed by few lower degree polynomials

: count number of such representations
Improvement:
o f somewhat approximated by fewer lower degree polynomials

o Use recursion to bound the number of possible approximations
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From erasures to errors

@ Theorem 4:RM decodable from “many” errors at high
rate

® Novel reduction from errors to erasures:
If the can be corrected in

then the error pattern U can be corrected in
RM(m,m-2t).

@ Generalizes to any linear code

@ Abbe-S-Wigderson: result is “existential”’, no efficient
algorithm provided.

@ Saptharishi-S-Volk: Efficient decoding algorithm

@ Result “boosted” by recent results of
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Summary

o RM codes achieve capacity for BEC for rates close
to 0 or | and for BSC at rate close to 0

@ First improvement on a 50 years old problem

@ Several developments followed:

o : RM achieve BEC
capacity for constant rate

o : efficient algorithm for correcting most error
patterns of weight t in RM(m,m-2t)

@ Open problem: Do RM codes achieve capacity for the BSC!?

@ Most interesting case: what can be said for the BSC for constant rate
(degree m/2 £ O(+/m))?

@ Open problem: Do RM codes achieve capacity for the BEC for all rates!?



