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Reed-Muller code - RM(m,r)

Message:  
coefficient vector of a polynomial  
f(x1,…,xm) over !2 of degree ≤ r

Encoding: evaluations of f:  
f → (f(000),f(001),…,f(111))

Distance: Hamming distance between any two 
code words is ≥ 2m-r

Note: codewords form a linear space over !2 
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The Sierpinski matrix

Generating matrix of Reed-Muller code:
codewords are linear combination of rows
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Reed-Muller code - RM(m,r)

Message: coefficient vectors of a polynomial 
f(x1,…,xm) over !2 of degree ≤ r

Encoding: evaluations of f:  
f → (f(000),f(001),…,f(111))

Minimum distance: d=2m-r

Most studied linear algebraic code

Around over 50 years yet fundamental 
questions are still open!



Why CS cares about RM codes?



Why CS cares about RM codes?
Low degree polynomials ubiquitous in TCS: 

lower bounds

derandomization

PCP

Hardness amplification

List decoding

Algorithms

Property testing

Extractors

… 



Decoding RM codes

Decoding problem: decode corrupted codewords 

Worst case behavior well understood:

Reed: Efficient decoding up to half min. distance 

Gopalan-Klivans-Zuckerman, Bhowmick-Lovett:  
List decoding radius ≤ 2·dist
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Decoding RM codes

Decoding problem: decode corrupted codewords 

Worst case behavior well understood:

Reed: Efficient decoding up to half min. distance 

Gopalan-Klivans-Zuckerman, Bhowmick-Lovett:  
List decoding radius ≤ 2·dist

Can we do better for random errors?

Average case study of errors

Old open problem in coding theory: 

How good are RM codes?

Do RM codes meet Shannon’s bounds for random errors and 
erasures?
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Error Model ⟷ Channels

Binary Erasure Channel:  
symbol is replaced with ? (erased) with probability p

Binary Symmetric Channel:  
symbol is flipped with probability p

0 1 1 0 1 0 0 0 1 0

0 1 0 1 1 0 1 0 1 00 1 0 1 1 0 1 0 1 0

BSC



Error Model ⟷ Channels

Binary Erasure Channel:  
symbol is replaced with ? (erased) with probability p

Binary Symmetric Channel:  
symbol is flipped with probability p

Shannon: maximal rate that enables decoding w.h.p. (capacity of 
channel) - best tradeoff between redundancy and robustness

BEC: R = 1 - p

BSC R = 1 - h(p)   (h(x) = -xlog(x)-(1-x)log(1-x))



Error Model ⟷ Channels

Binary Erasure Channel:  
symbol is replaced with ? (erased) with probability p

Binary Symmetric Channel:  
symbol is flipped with probability p

Shannon: maximal rate that enables decoding w.h.p. (capacity of 
channel) - best tradeoff between redundancy and robustness

BEC: R = 1 - p

BSC R = 1 - h(p)   (h(x) = -xlog(x)-(1-x)log(1-x))

Major goal: design explicit codes that meet Shannon’s bound  
(with efficient encoding and decoding)



Average case behavior of RM
Do Reed-Muller codes meet Shannon’s bound? 
I.e., can RM codes of rate R handle the same fraction of  
errors/erasures that random codes of rate R handle. 



Average case behavior of RM
Do Reed-Muller codes meet Shannon’s bound? 
I.e., can RM codes of rate R handle the same fraction of  
errors/erasures that random codes of rate R handle. 

Problem related to 

Rank of random evaluation matrices

Spaces of tensors over !2 

Polynomial interpolation from noisy data

Sparse recovery

Learning

Polar codes

…



Polar Codes

Introduced by Arikan 2009

Very similar to RM - messages are polynomials with respect to a 
different monomial basis (different choice of rows from the 
Serpiensky matrix)

Achieve capacity for all channels!

Due to strange basis (no simple description), Polar codes seem less 
natural than RM codes, yet are still morally similar

It would be much nicer to work with RM codes rather than Polar!



Results

Note: minimum distance of RM(m,m-s) is 2s

BEC BSC
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Results

Note: minimum distance of RM(m,m-s) is 2s

Prior work: r=1 (folklore). r=2 (Helleseth, Klove, Levenshtein ’05)

Kumar-Pfister, Kudekar-Mondelli-Sasoglu-Urbanke 15: RM achieve 
capacity for the BEC at constant Rate !

BEC BSC

r = o(m) √ √

√ √(# of errors)  
r = m −O m / log(m)( )
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Figure 2: The number of correctable errors as a function of the degree, in logarithmic scale, normalized by m. The red
line corresponds to the algorithm given in [ Dum06], which corrects # d log d # 2(1" ! )m á(1 " ! )m errors. The blue

curve corresponds to the algorithm given in this work, which corrects # 2h( 1" !
2 )m errors.
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Our results:
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(d log d)O(log m) errors

n1+ o(1) time algo.

2
h
"

1# !
2

#
m

errors for ! = r/ m

assuming RM achieve capacity for all rates
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BEC theorems 



Reduction to rank of 
submatrices

Questions about BEC (erasures) boil down to

1. High rate: Is a random set of columns (slightly less than number of 
rows), of the generating matrix, linearly independent?

2. Low rate: Does a random set of columns (slightly more than 
number of rows), of the generating matrix, span all other columns?

We give positive answers which solve the BEC case for high and low 
rate, respectively.

Very different from Kumar-Pfister, Kudekar-Mondelli-Sasoglu-Urbanke
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Generating Matrix of RM(4,2)

1
x1
x2
x3
x4

x1x2
x1x3
x1x4
x2x3
x2x4
x3x4

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1

!

"

#
#
#
#
#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&
&
&
&
&

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Does the set span columns space?



Parity Check Matrix

H such that v in Code iff Hv = 0

H is generating matrix for the dual code  
C!  = {u : u! v for all v in C}

Fact RM(m,r)!  = RM(m,m-r-1)

I.e., P.C.M is also an evaluation matrix (monomials 
vs. points)



Reduction (high-rate)
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Reduction (high-rate)

Unique solution (unique decoding) iff corresponding sub-
matrix has full column-rank.
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Reduction (low-rate)

msg



Reduction (low-rate)

Genmsg !



Reduction (low-rate)

Genmsg ! = 0 1 1 0 1 0 0 0 1 0



Reduction (low-rate)

Genmsg ! = 0 1 1 0 1 0 0 0 1 0

BEC
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Reduction (low-rate)

Need to decode message based on non-erased information. 
Possible iff corresponding sub-matrix has full row-rank.

Genmsg ! = 0 1 1 0 1 0 0 0 1 0

BEC

0 1 ? 0 1 ? 0 0 1 0



BSC theorems 
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Using the weight distribution

Theorem 5: Tighter bounds on weight distribution of RM 
codes (based upon and improves Kaufman-Lovett-Porat)  
 
            #codewords of wt < 2m/2b ≈ |RM(m,r)|(r/m)b

Morally, weight distribution similar to random codes

Theorem 2: RM achieve capacity for BSC at low rate

Proof: Bounds on weight distribution imply code achieves 
capacity (mimic proof that random codes achieve capacity)

This connection was already observed by Poltyrev ‘94
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Weight distribution

Theorem 5: Tighter bounds on weight distribution of RM codes (based upon and 
improves Kaufman-Lovett-Porat)  
 
            #codewords of wt < 2

m
/2

b
 ≈ |RM(m,r)|

(r/m)b

Idea of Proof: f of small weight ⟷ f is a biased polynomial

<z f very well approximated by few lower degree polynomials

<z f computed by few lower degree polynomials

KLP: count number of such representations

Improvement: 

f somewhat approximated by fewer lower degree polynomials

Use recursion to bound the number of possible approximations



From erasures to errors
Theorem 4: RM decodable from “many” errors at high 
rate
Novel reduction from errors to erasures:  
If the erasure pattern U can be corrected in  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From erasures to errors
Theorem 4: RM decodable from “many” errors at high 
rate
Novel reduction from errors to erasures:  
If the erasure pattern U can be corrected in  
RM(m,m-t) then the error pattern U can be corrected in 
RM(m,m-2t). 
Generalizes to any linear code
Abbe-S-Wigderson: result is “existential”, no efficient 
algorithm provided.
Saptharishi-S-Volk: Efficient decoding algorithm
Result “boosted” by recent results of Kumar-Pfister, 
Kudekar-Mondelli-Sasoglu-Urbanke
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Summary
Abbe-S-Wigderson: RM codes achieve capacity for BEC for rates close 
to 0 or 1 and for BSC at rate close to 0

First improvement on a 50 years old problem

Several developments followed:

Kumar-Pfister, Kudekar-Mondelli-Sasoglu-Urbanke: RM achieve BEC 
capacity for constant rate

Saptharishi-S-Volk: efficient algorithm for correcting most error 
patterns of weight t in RM(m,m-2t) 

Open problem: Do RM codes achieve capacity for the BSC?

Most interesting case: what can be said for the BSC for constant rate  
(degree m/2 ± O(√m))?

Open problem: Do RM codes achieve capacity for the BEC for all rates?


