
0

d-imbalance WOM codes for reduced inter-cell
interference in Multi-level NVMs

Evyatar Hemo
Yuval Cassuto

Technion ïElectrical Engineering

CS Coding Seminar ï26.06.2016

1

ƴ In a : Codes for Write Once Memories (WOM)

In some storage devices, we can only write data to the device

(and cannot erase)

WOM codes enable us to perform multiple-writes

WOM Codes Intro

2

ƴ In a : Codes for Write Once Memories (WOM)

In some storage devices, we can only write data to the device

(and cannot erase)

WOM codes enable us to perform multiple-writes

ƴ First introduced by Rivest and Shamir (1982), aimed for

Optical disks

Punched card

PROMS

ƴ IT researchers took over on 1985

ƴ Flash memories flood (2007-Now)

WOM Codes Intro

3

The ñexpensiveò erase operation in flash

ƴ Data is represented

by the amount of

electrical charge

ó0ô level

óq-1ô level

4

The ñexpensiveò erase operation in flash

ƴ Data is represented

by the amount of

electrical charge

ƴ Cells can be written

individually

ó0ô level

óq-1ô level

5

The ñexpensiveò erase operation in flash

ƴ Data is represented

by the amount of

electrical charge

ƴ Cells can be written

individually

ó0ô level

óq-1ô level

6

The ñexpensiveò erase operation in flash

ƴ Data is represented

by the amount of

electrical charge

ƴ Cells can be written

individually

ó0ô level

óq-1ô level

7

The ñexpensiveò erase operation in flash

ƴ Data is represented

by the amount of

electrical charge

ƴ Cells can be written

individually

ó0ô level

óq-1ô level

8

The ñexpensiveò erase operation in flash

ƴ Data is represented

by the amount of

electrical charge

ƴ Cells can be written

individually

ƴ However, can only

be erased by erasing

an entire block

ó0ô level

óq-1ô level

9

WOM codes

ƴ Write Once Memories codes enable to rewrite the block

without erasing it

A C(n,q,t,M) WOM code

10

WOM codes

ƴ Write Once Memories codes enable to rewrite the block

without erasing it

A C(n,q,t,M) WOM code

Number of

memory cells

11

WOM codes

ƴ Write Once Memories codes enable to rewrite the block

without erasing it

A C(n,q,t,M) WOM code

Number of

memory cells

Number of

memory levels

12

WOM codes

ƴ Write Once Memories codes enable to rewrite the block

without erasing it

A C(n,q,t,M) WOM code

Number of

memory cells

Number of

memory levels

Number of writes

13

WOM codes

ƴ Write Once Memories codes enable to rewrite the block

without erasing it

A C(n,q,t,M) WOM code

Number of

memory cells

Number of

memory levels

Number of writes Alphabet size of

each write

14

WOM codes

ƴ Write Once Memories codes enable to rewrite the block

without erasing it

A C(n,q,t,M) WOM code

Number of

memory cells

Number of

memory levels

Number of writes Alphabet size of

each write

ÅWOM codes have proven to

theoretically reduce wear and

increase the lifetime of the media
Å [Odeh&Cassuto, MSST ó14]

Å [Yadgar, Yaakobi, Schuster, FAST

ô15]

15

WOM codes

ƴ Write Once Memories codes enable to rewrite the block

without erasing it

A C(n,q,t,M) WOM code

Number of

memory cells

Number of

memory levels

Number of writes Alphabet size of

each write

ÅWOM codes have proven to

theoretically reduce wear and

increase the lifetime of the media
Å [Odeh&Cassuto, MSST ó14]

Å [Yadgar, Yaakobi, Schuster, FAST

ô15]

Standard FTL use

16

WOM codes

ƴ Write Once Memories codes enable to rewrite the block

without erasing it

A C(n,q,t,M) WOM code

Number of

memory cells

Number of

memory levels

Number of writes Alphabet size of

each write

ÅWOM codes have proven to

theoretically reduce wear and

increase the lifetime of the media
Å [Odeh&Cassuto, MSST ó14]

Å [Yadgar, Yaakobi, Schuster, FAST

ô15] Using WOM code

Standard FTL use

17

Write without erase (out of order)

ƴ WOM codes (in-place writes) increase inter-cell-

interference

18

Write without erase (out of order)

ƴ WOM codes (in-place writes) increase inter-cell-

interference

19

Write without erase (out of order)

ƴ WOM codes (in-place writes) increase inter-cell-

interference

Updating data

20

Write without erase (out of order)

ƴ WOM codes (in-place writes) increase inter-cell-

interference

Updating data

ICI in neighboring

cells

21

ƴ Breadth-first programming

ICI - Example

0

5

2

4

3

1

6

Target values: 5 2

A. Berman, and Y. Birk. "Constrained flash memory programming.ñ Information Theory Proceedings (ISIT), 2011

22

ƴ Breadth-first programming

ICI - Example

0

5

2

4

3

1

6

Target values: 5 2

prog. step #1

A. Berman, and Y. Birk. "Constrained flash memory programming.ñ Information Theory Proceedings (ISIT), 2011

23

ƴ Breadth-first programming

ICI - Example

0

5

2

4

3

1

6

Target values: 5 2

ICI

A. Berman, and Y. Birk. "Constrained flash memory programming.ñ Information Theory Proceedings (ISIT), 2011

24

ƴ Breadth-first programming

ICI - Example

0

5

2

4

3

1

6

Target values: 5 2

prog. step #2

A. Berman, and Y. Birk. "Constrained flash memory programming.ñ Information Theory Proceedings (ISIT), 2011

25

ƴ Breadth-first programming

ICI - Example

0

5

2

4

3

1

6

Target values: 5 2

ICI

A. Berman, and Y. Birk. "Constrained flash memory programming.ñ Information Theory Proceedings (ISIT), 2011

26

ƴ Breadth-first programming

ICI - Example

0

5

2

4

3

1

6

Target values: 5 2

A. Berman, and Y. Birk. "Constrained flash memory programming.ñ Information Theory Proceedings (ISIT), 2011

27

ƴ Breadth-first programming

ICI - Example

0

5

2

4

3

1

6

Target values: 5 2

A. Berman, and Y. Birk. "Constrained flash memory programming.ñ Information Theory Proceedings (ISIT), 2011

28

ƴ Breadth-first programming

ICI - Example

0

5

2

4

3

1

6

Target values: 5 2

Reached its

target level

A. Berman, and Y. Birk. "Constrained flash memory programming.ñ Information Theory Proceedings (ISIT), 2011

29

ƴ Breadth-first programming

ICI - Example

0

5

2

4

3

1

6

Target values: 5 2

A. Berman, and Y. Birk. "Constrained flash memory programming.ñ Information Theory Proceedings (ISIT), 2011

30

ƴ Breadth-first programming

ICI - Example

0

5

2

4

3

1

6

Target values: 5 2

A. Berman, and Y. Birk. "Constrained flash memory programming.ñ Information Theory Proceedings (ISIT), 2011

31

ƴ Breadth-first programming

ICI - Example

0

5

2

4

3

1

6

Target values: 5 2

A. Berman, and Y. Birk. "Constrained flash memory programming.ñ Information Theory Proceedings (ISIT), 2011

32

ƴ Breadth-first programming

ICI - Example

0

5

2

4

3

1

6

Target values: 5 2

A. Berman, and Y. Birk. "Constrained flash memory programming.ñ Information Theory Proceedings (ISIT), 2011

33

ƴ Breadth-first programming

ICI - Example

0

5

2

4

3

1

6

Target values: 5 2

A. Berman, and Y. Birk. "Constrained flash memory programming.ñ Information Theory Proceedings (ISIT), 2011

34

ƴ Breadth-first programming

ICI - Example

0

5

2

4

3

1

6

Target values: 5 2

Reached its

target level

A. Berman, and Y. Birk. "Constrained flash memory programming.ñ Information Theory Proceedings (ISIT), 2011

35

ƴ Breadth-first programming

ICI - Example

0

5

2

4

3

1

6

Target values: 5 2

Reached its

target level

Error!

A. Berman, and Y. Birk. "Constrained flash memory programming.ñ Information Theory Proceedings (ISIT), 2011

36

ƴ Breadth-first programming

ICI - Example

0

5

2

4

3

1

6

Target values: 5 2

Error!

Minimizing level difference

between adjacent cells can

reduce ICI

A. Berman, and Y. Birk. "Constrained flash memory programming.ñ Information Theory Proceedings (ISIT), 2011

37

Decoding Function: n= 2

C1

0 2 5

1 4 7

3 6 0 2

1 4

0 1 2 3

0

1

2

3

C2

C1: Level of cell # 1, C2: Level of cell # 2

M=8

άᶰπȟρȟȣȟχ

ὧȟὧ άᶰπȟȣȟχ

q=4

38

ƴ We wish to write a sequence of three values: 3,7,1

Example ïconstruction of ╒◊▪╬▫▪▼Ȣ ȟȟȟ

00 Initial state

