Semi-Constrained Systems

Ohad Elishco
Tom Meyerovitch and Moshe Schwartz

Ben Gurion University

Dec, 2016
Motivation and Background
Outline

- Motivation and Background
- Capacity of semiconstrained systems
Outline

- Motivation and Background
- Capacity of semiconstrained systems
- Convergence rate of the capacity
Motivation and Background
Capacity of semiconstrained systems
Convergence rate of the capacity
Probabilistic encoding scheme
Outline

- Motivation and Background
- Capacity of semiconstrained systems
- Convergence rate of the capacity
- Probabilistic encoding scheme
- Deterministic encoding scheme
Outline

- Motivation and Background
- Capacity of semiconstrained systems
- Convergence rate of the capacity
- Probabilistic encoding scheme
- Deterministic encoding scheme
- Current research
Motivation and Background

Transmitting and recovering: Errors may occur when some patterns are transmitted.
Motivation and Background

- Transmitting and recovering: Errors may occur when some patterns are transmitted.
- Two common approaches.
Motivation and Background

- Transmitting and recovering: Errors may occur when some patterns are transmitted.
- Two common approaches.
- Semiconstrained systems (SCS) are a middle road.
Motivation and Background

- Transmitting and recovering: Errors may occur when some patterns are transmitted.
- Two common approaches.
- Semiconstrained systems (SCS) are a middle road.
- Rate penalty is reduced.
Notation and Definitions

- Σ is a finite alphabet, Σ^* is the set of all finite words.
Notation and Definitions

- \(\Sigma \) is a finite alphabet, \(\Sigma^* \) is the set of all finite words.
- For \(\omega \in \Sigma^* \), \(|\omega| \) denotes the length of \(\omega \).
Notation and Definitions

- Σ is a finite alphabet, Σ^* is the set of all finite words.
- For $\omega \in \Sigma^*$, $|\omega|$ denotes the length of ω.
- For $w \in \Sigma^*$ and $k < |w|$, fr^k_w is the empirical frequency of k-tuples in w.
Notation and Definitions

- Σ is a finite alphabet, Σ^* is the set of all finite words.
- For $\omega \in \Sigma^*$, $|\omega|$ denotes the length of ω.
- For $w \in \Sigma^*$ and $k < |w|$, fr^k_w is the empirical frequency of k-tuples in w.

Example

Let $\Sigma = \{0, 1\}$, $k = 2$, and $w = 011101$. Then, $|w| = 6$ and $fr^k_w = (0, \frac{2}{5}, \frac{1}{5}, \frac{2}{5})$.
Definition (SCS)

Let $\mathcal{P}(\Sigma^k)$ denote the set of all probability measures on Σ^k. Let $\Gamma \subseteq \mathcal{P}(\Sigma^k)$ be a closed and convex set. A semiconstrained system (SCS), Γ, is the set

$$\mathcal{B}(\Gamma) = \left\{ w \in \Sigma^* : \text{fr}_w^k \in \Gamma \right\}.$$
Definition (SCS)

Let $\mathcal{P}(\Sigma^k)$ denote the set of all probability measures on Σ^k. Let $\Gamma \subseteq \mathcal{P}(\Sigma^k)$ be a closed and convex set. A semiconstrained system (SCS), Γ, is the set

$$\mathcal{B}(\Gamma) = \left\{ w \in \Sigma^* : \text{fr}_w \in \Gamma \right\}.$$

We define $\mathcal{B}_n(\Gamma) := \Sigma^n \cap \mathcal{B}(\Gamma)$.
Definition of SCS

Definition (SCS)

Let $\mathcal{P}(\Sigma^k)$ denote the set of all probability measures on Σ^k. Let $\Gamma \subseteq \mathcal{P}(\Sigma^k)$ be a closed and convex set. A semiconstrained system (SCS), Γ, is the set

$$
\mathcal{B}(\Gamma) = \left\{ w \in \Sigma^* : \text{fr}^k_w \in \Gamma \right\}.
$$

We define $\mathcal{B}_n(\Gamma) := \Sigma^n \cap \mathcal{B}(\Gamma)$

Definition (Capacity)

The capacity of $\mathcal{B}(\Gamma)$ defined as

$$
cap(\mathcal{B}(\Gamma)) := \limsup_{n \to \infty} \frac{1}{n} \log_2 |\mathcal{B}_n(\Gamma)|.
$$
Example \(((0, k, p)\text{-RLL SCS})\)

Let \(\Sigma = \{0, 1\} \) and let \(0 \leq p \leq 1 \). We define the \((0, k, p)\text{-RLL SCS}\) as the set

\[
\Gamma = \left\{ \mu \in \mathcal{P}(\Sigma^{k+1}) : \mu(1^{k+1}) \leq p \right\}.
\]
Examples

Example $((0, k, p)\text{-RLL SCS})$

Let $\Sigma = \{0, 1\}$ and let $0 \leq p \leq 1$. We define the $(0, k, p)$-RLL SCS as the set

$$\Gamma = \left\{ \mu \in \mathcal{P}(\Sigma^{k+1}) : \mu(1^{k+1}) \leq p \right\}.$$

Example

Let $\Sigma = \{0, 1\}$ and let

$$\Gamma = \left\{ \mu \in \mathcal{P}(\Sigma^2) : \mu(00) \leq \frac{1}{2}, \mu(11) \leq \frac{1}{2}, \mu(01) = 0 \right\}.$$
Let $\Sigma = \{0, 1, 2, 3\}$ and let

$$\Gamma = \{ \mu \in \mathcal{P}(\Sigma^2) : \mu(11) = 0,$$
$$\mu(20) = \mu(30) = \mu(21) = \mu(31) = 0,$$
$$\mu(00) + \mu(10) + \mu(01) \geq 0.25 \}.$$
Examples

Figure: Graph for SCS Γ.
Example

Let $\Sigma = \{0, 1, 2, 3\}$ and let

\[
\Gamma = \left\{ \mu \in \mathcal{P}(\Sigma^2) : \begin{array}{l}
\mu(11) = 0, \\
\mu(20) = \mu(30) = \mu(21) = \mu(31) = 0, \\
\mu(00) + \mu(10) + \mu(01) \geq 0.25 \end{array} \right\}.
\]
Example

Let $\Sigma = \{0, 1, 2, 3\}$ and let

$$
\Gamma = \left\{ \mu \in \mathcal{P}(\Sigma^2) : \mu(11) = 0, \\
\mu(20) = \mu(30) = \mu(21) = \mu(31) = 0, \\
\mu(00) + \mu(10) + \mu(01) \geq 0.25 \right\}.
$$

cap(\mathcal{B}(\Gamma)) < 1.
Examples

Example
Let $\Sigma = \{0, 1, 2, 3\}$ and let

$$\Gamma = \left\{ \mu \in \mathcal{P}(\Sigma^2) : \begin{array}{l} \mu(11) = 0, \\
\mu(20) = \mu(30) = \mu(21) = \mu(31) = 0, \\
\mu(00) + \mu(10) + \mu(01) \geq 0.25 \end{array} \right\}.$$

- $\text{cap}(\mathcal{B}(\Gamma)) < 1$.
- A connected component with capacity 1.
What Do We Want to Know?

- Exact capacity.
What Do We Want to Know?

- Exact capacity.
 - Known using large deviations [Algoet and Marcus (92), Marcus and Roth (92), Karabed et al. (88)]
What Do We Want to Know?

- Exact capacity.
 - Known using large deviations [Algoet and Marcus (92), Marcus and Roth (92), Karabel et al. (88)]
 - This work: existence of limit, continuity.
What Do We Want to Know?

- Exact capacity.
 - Known using large deviations [Algoet and Marcus (92), Marcus and Roth (92), Karabed et al. (88)]
 - This work: existence of limit, continuity.
- Convergence rate of the capacity.
What Do We Want to Know?

- Exact capacity.
 - Known using large deviations [Algoet and Marcus (92), Marcus and Roth (92), Karabel et al. (88)]
 - This work: existence of limit, continuity.

- Convergence rate of the capacity.
 - Known for \((0, k)\)-RLL and for \((d, \infty)\)-RLL in one and two dimensions [Schwartz and Vardi (2011), Kato and Zeger (1999)].
What Do We Want to Know?

- **Exact capacity.**
 - Known using large deviations [Algoet and Marcus (92), Marcus and Roth (92), Karabed et al. (88)]
 - This work: existence of limit, continuity.

- **Convergence rate of the capacity.**
 - Known for \((0, k)\)-RLL and for \((d, \infty)\)-RLL in one and two dimensions [Schwartz and Vardi (2011), Kato and Zeger (1999)].
 - This work: Rate for \((0, k, p)\)-RLL SCS up to a small constant.
What Do We Want to Know?

- **Exact capacity.**
 - Known using large deviations [Algoet and Marcus (92), Marcus and Roth (92), Karabed et al. (88)]
 - This work: existence of limit, continuity.

- **Convergence rate of the capacity.**
 - Known for $(0, k)$-RLL and for (d, ∞)-RLL in one and two dimensions [Schwartz and Vardi (2011), Kato and Zeger (1999)].
 - This work: Rate for $(0, k, p)$-RLL SCS up to a small constant.

- **Encoding scheme.**
What Do We Want to Know?

- Exact capacity.
 - Known using large deviations [Algoet and Marcus (92), Marcus and Roth (92), Karabed et al. (88)]
 - This work: existence of limit, continuity.

- Convergence rate of the capacity.
 - Known for \((0, k)\)-RLL and for \((d, \infty)\)-RLL in one and two dimensions [Schwartz and Vardi (2011), Kato and Zeger (1999)].
 - This work: Rate for \((0, k, p)\)-RLL SCS up to a small constant.

- Encoding scheme.
What Do We Want to Know?

- **Exact capacity.**
 - Known using large deviations [Algoet and Marcus (92), Marcus and Roth (92), Karabed et al. (88)]
 - This work: existence of limit, continuity.

- **Convergence rate of the capacity.**
 - Known for \((0, k)-\)RLL and for \((d, \infty)-\)RLL in one and two dimensions [Schwartz and Vardi (2011), Kato and Zeger (1999)].
 - This work: Rate for \((0, k, p)-\)RLL SCS up to a small constant.

- **Encoding scheme.**
 - This work: general probabilistic and deterministic capacity achieving schemes.
We replace a combinatorial calculation of $|B_n(\Gamma)|$ with a probability-bounding problem.
We replace a combinatorial calculation of $|\mathcal{B}_n(\Gamma)|$ with a probability-bounding problem.

Let p_n denote the probability that a random string of length n is in $\mathcal{B}_n(\Gamma)$.
We replace a combinatorial calculation of $|\mathcal{B}_n(\Gamma)|$ with a probability-bounding problem.

Let p_n denote the probability that a random string of length n is in $\mathcal{B}_n(\Gamma)$.

We have $|\mathcal{B}_n(\Gamma)| = p_n |\Sigma|^n$.
Exact Capacity is Known

- We replace a combinatorial calculation of $|B_n(\Gamma)|$ with a probability-bounding problem.
- Let p_n denote the probability that a random string of length n is in $B_n(\Gamma)$.
- We have $|B_n(\Gamma)| = p_n|\Sigma|^n$.
- $\text{cap}(\Gamma) = \log_2|\Sigma| + \lim \sup_{n \to \infty} \frac{1}{n} \log_2 p_n$.
Exact Capacity is Known

We replace a combinatorial calculation of $|\mathcal{B}_n(\Gamma)|$ with a probability-bounding problem.

Let p_n denote the probability that a random string of length n is in $\mathcal{B}_n(\Gamma)$.

We have $|\mathcal{B}_n(\Gamma)| = p_n |\Sigma|^n$.

$\text{cap}(\Gamma) = \log_2 |\Sigma| + \limsup_{n \to \infty} \frac{1}{n} \log_2 p_n$.

For a SCS $\Gamma \subseteq \mathcal{P}(\Sigma^k)$ we obtain from large deviations theory

$$\limsup_{n \to \infty} \frac{1}{n} \log_2 p_n \leq - \inf_{\nu \in \Gamma} I(\nu),$$

$$\liminf_{n \to \infty} \frac{1}{n} \log_2 p_n \geq - \inf_{\nu \in \Gamma^c} I(\nu).$$

where $I(\cdot)$ is given in terms of the K-L divergence.
Two Interesting Examples

Example (1)

Let $B(\Gamma)$ be an SCS with $\Sigma = \{0, 1\}$ and
$\Gamma = \{\mu \in \mathcal{P}(\Sigma) : \mu(0) = \mu(1) = \frac{1}{2}\}$. For an even number, n, $|B_n(\Gamma)| = \binom{n}{n/2}$ but for an odd n, $|B_n(\Gamma)| = 0$. Thus, $\text{cap}(\Gamma) > 0$.
Two Interesting Examples

Example (1)

Let $B(\Gamma)$ be an SCS with $\Sigma = \{0, 1\}$ and $\Gamma = \{\mu \in \mathcal{P}(\Sigma) : \mu(0) = \mu(1) = \frac{1}{2}\}$. For an even number, n, $|B_n(\Gamma)| = \binom{n}{n/2}$ but for an odd n, $|B_n(\Gamma)| = 0$. Thus, $\text{cap}(\Gamma) > 0$. The limit does not exist.
Two Interesting Examples

Example (2)

Let Γ be an SCS with $\Sigma = \{0, 1\}$ and

$\Gamma = \{\mu \in \mathcal{P}(\Sigma) : \mu(0) = r, \mu(1) = 1 - r\}$

where $r \in [0, 1]$ is an irrational number. Since the capacity defined over finite sequences, for every n we obtain $B_n(\Gamma) = \emptyset$, which implies $\text{cap}(\Gamma) = -\infty$.

Ohad Elishco SCS
Two Interesting Examples

Example (2)

Let Γ be an SCS with $\Sigma = \{0, 1\}$ and

$$\Gamma = \{ \mu \in \mathcal{P}(\Sigma) : \mu(0) = r, \mu(1) = 1 - r \}$$

where $r \in [0, 1]$ is an irrational number. Since the capacity defined over finite sequences, for every n we obtain $B_n(\Gamma) = \emptyset$, which implies $\text{cap}(\Gamma) = -\infty$.

For every $\epsilon > 0$,

$$\lim_{n \to \infty} \frac{1}{n} \log_2 |B_n(B_\epsilon(\Gamma))| > 0$$

exists. The second example shows that

$$\lim_{\epsilon \to 0} \text{cap}(B_\epsilon(\Gamma)) \neq \text{cap}(\Gamma).$$
A weak semiconstrained system (WSCS), $\overline{B}(\Gamma)$, is defined by

$$\overline{B}(\Gamma) = \left\{ \omega \in \Sigma^* : \text{fr}^k_w \in B_{\xi(|\omega|)}(\Gamma) \right\}$$

where $\xi : \mathbb{N} \rightarrow \mathbb{R}$, $\xi(n) = o(1)$ and $\xi(n) = \Omega\left(\frac{1}{n}\right)$.
Definition

A weak semiconstrained system (WSCS), $\overline{B}(\Gamma)$, is defined by

$$\overline{B}(\Gamma) = \left\{ \omega \in \Sigma^* : \frac{fr^k_w}{\xi(|\omega|)}(\Gamma) \right\}$$

where $\xi : \mathbb{N} \rightarrow \mathbb{R}$, $\xi(n) = o(1)$ and $\xi(n) = \Omega(\frac{1}{n})$.

Theorem

For WSCS the limit exists and equals to $- \inf_{\nu \in \Gamma} I(\nu)$. If $B(\Gamma) \neq \emptyset$ then the capacity is continuous with respect to the restrictions.
We now focus on the \((0, k, p)\)-RLL SCS.
We now focus on the \((0, k, p)\)-RLL SCS.

\(\Sigma = \{0, 1\}\) and

\[
\Gamma = \left\{ \mu \in \mathcal{P}(\Sigma^{k+1}) : \mu(1^{k+1}) \leq p \right\}.
\]
We now focus on the \((0, k, p)\)-RLL SCS.

\[\Sigma = \{0, 1\} \quad \text{and} \]

\[\Gamma = \left\{ \mu \in \mathcal{P}(\Sigma^{k+1}) : \mu(1^{k+1}) \leq p \right\}. \]

The capacity expression is given by an optimization problem.
We now focus on the \((0, k, p)\)-RLL SCS.
\[\Sigma = \{0, 1\} \text{ and } \Gamma = \left\{ \mu \in \mathcal{P}(\Sigma^{k+1}) : \mu(1^{k+1}) \leq p \right\}. \]

The capacity expression is given by an optimization problem.

We find bounds on the capacity.
We now focus on the \((0, k, p)\)-RLL SCS.

\[\Sigma = \{0, 1\} \text{ and } \Gamma = \left\{ \mu \in \mathcal{P}(\Sigma^{k+1}) : \mu(1^{k+1}) \leq p \right\}. \]

The capacity expression is given by an optimization problem.

We find bounds on the capacity.

For the upper bound we employ a bound by Janson.
We now focus on the $(0, k, p)$-RLL SCS.

\[\Sigma = \{0, 1\} \text{ and} \]

\[\Gamma = \left\{ \mu \in \mathcal{P}(\Sigma^{k+1}) : \mu(1^{k+1}) \leq p \right\}. \]

The capacity expression is given by an optimization problem.

We find bounds on the capacity.

For the upper bound we employ a bound by Janson.

The lower bound is calculated using large deviations theory.
Asymptotic Bounds

- We denote the capacity of $(0, k, p)$-RLL SCS as $C_{k,p}$.
Asymptotic Bounds

- We denote the capacity of \((0, k, p)\)-RLL SCS as \(C_{k,p}\).
- If \(p \geq \frac{1}{2^{k+1}}\) then \(C_{k,p} = 1\).
Asymptotic Bounds

- We denote the capacity of \((0, k, p)\)-RLL SCS as \(C_{k,p}\).
- If \(p \geq \frac{1}{2^{k+1}}\) then \(C_{k,p} = 1\).

Theorem

If \(p \leq \frac{1}{2^{k+1}}\) then

\[C_{k,p} \leq 1 - \frac{1}{3 - 2^{-k+1}} \left(\frac{\log_2 e}{2^{k+1}} + p(k + 1) - p \log_2 \frac{e}{p} \right) . \]

\[C_{k,p} \geq 1 - \frac{1 - p}{2^{k+1} - 1} \log_2 \left(\frac{2 - 2p}{1 + 2p(2^k - 1)} \right) - p \log_2 \left(\frac{2p(2^{k+1} - 1)}{1 + 2p(2^k - 1)} \right) . \]
Asymptotic Bounds

- As $k \to \infty$ the capacity goes to 1.
Asymptotic Bounds

- As $k \to \infty$ the capacity goes to 1.
- For fully constrained systems it is known that

$$1 - C_{k,0} = \frac{\log_2 e}{4 \cdot 2^k} (1 + o(1)).$$
Asymptotic Bounds

- As $k \to \infty$ the capacity goes to 1.
- For fully constrained systems it is known that
 \[
 1 - C_{k,0} = \frac{\log_2 e}{4} \cdot \frac{1}{2^k} (1 + o(1)).
 \]
- For $(0, k, p)$-RLL SCS $p = p(k) \leq \frac{1}{2^{k+1}}$.
Asymptotic Bounds

- As $k \to \infty$ the capacity goes to 1.
- For fully constrained systems it is known that
 \[
 1 - C_{k,0} = \frac{\log_2 e}{4 \cdot 2^k} (1 + o(1)).
 \]
- For $(0, k, p)$-RLL SCS $p = p(k) \leq \frac{1}{2^{k+1}}$.
- Denote by $c = \lim_{k \to \infty} \frac{p}{2^{-(k+1)}}$.
Asymptotic Bounds

Theorem

For $p = p(k)$,

$$
\frac{b_L}{2^{k+1}}(1 + o(1)) \leq 1 - C_{k,p} \leq \frac{b_U}{2^{k+1}}(1 + o(1))
$$

where

$$
b_L = 3 - \sqrt{1 + 8c} \frac{\log_2 e - c \log_2 \left(\frac{1 + 4c + \sqrt{1 + 8c}}{8c} \right)}{4}
$$

and

$$
b_U = (1 + c)(1 - H(\frac{1}{c + 1}))
$$
Asymptotic Bounds

Theorem

For $p = p(k)$,

$$\frac{b_L}{2^{k+1}}(1 + o(1)) \leq 1 - C_{k,p} \leq \frac{b_U}{2^{k+1}}(1 + o(1))$$

where

$$b_L = \frac{3 - \sqrt{1 + 8c}}{4} \log_2 e - c \log_2 \left(\frac{1 + 4c + \sqrt{1 + 8c}}{8c} \right)$$

and

$$b_U = (1 + c)(1 - H\left(\frac{1}{c + 1}\right))$$

- $1.35 \leq \frac{b_U}{b_L} \leq 1.52$.
Probabilistic Encoding Scheme

Inspired by a coding scheme briefly sketched in a paper by S. Aviran, P. Siegel, and J. Wolf (2005).
Probabilistic Encoding Scheme

- Inspired by a coding scheme briefly sketched in a paper by S. Aviran, P. Siegel, and J. Wolf (2005).
- The scheme relies on LD theory.
Assumptions: \(\Sigma = \{0, 1\} \) and the constraints are on \(k \)-tuples.
Assumptions: $\Sigma = \{0, 1\}$ and the constraints are on k-tuples.

Step 1: solve the LD optimization problem and obtain:
Assumptions: \(\Sigma = \{0, 1\} \) and the constraints are on \(k \)-tuples.

Step 1: solve the LD optimization problem and obtain:

- \(p = (p_0, p_1, \ldots, p_{2^k-1}) \) the \(k \)-tuples empirical distribution.
Assumptions: $\Sigma = \{0, 1\}$ and the constraints are on k-tuples.

Step 1: solve the LD optimization problem and obtain:
- $p = (p_0, p_1, \ldots, p_{2^k-1})$ the k-tuples empirical distribution.
- C the capacity of the WSCS.
Assumptions: \(\Sigma = \{0, 1\} \) and the constraints are on \(k \)-tuples.

Step 1: solve the LD optimization problem and obtain:
- \(p = (p_0, p_1, \ldots, p_{2^k - 1}) \) the \(k \)-tuples empirical distribution.
- \(C \) the capacity of the WSCS.

Step 2: construct a Markov chain on the binary De-Bruijn graph of order \(k - 1 \) with stationary distribution on edges \(p = (p_0, p_1, \ldots, p_{2^k - 1}) \).
Assumptions: \(\Sigma = \{0, 1\} \) and the constraints are on \(k \)-tuples.

Step 1: solve the LD optimization problem and obtain:
- \(p = (p_0, p_1, \ldots, p_{2^k - 1}) \) the \(k \)-tuples empirical distribution.
- \(C \) the capacity of the WSCS.

Step 2: construct a Markov chain on the binary De-Bruijn graph of order \(k - 1 \) with stationary distribution on edges \(p = (p_0, p_1, \ldots, p_{2^k - 1}) \).

Step 3: Partition and bias the Bernoulli \(\frac{1}{2} \) input bits.
Encoder Recipe - Partitioning

Input
\[m \in \Sigma^n \]

0\ldots00 \in \Sigma^{k-1}

0\ldots01 \in \Sigma^{k-1}

\[\tilde{m}_0 \]

\[\tilde{m}_1 \]

\[\vdots \]

1\ldots11 \in \Sigma^{k-1}

\[\tilde{m}_{2^{k-1}-1} \]

Figure: Partitioning.

Ohad Elishco SCS
Encoder Recipe - Biasing

\[m \in \Sigma^n \]

\(\hat{m}_0 \) \hspace{1cm} 0...00 \in \Sigma^{k-1} \hspace{1cm} 0...00 \in \Sigma^{k-1} \)

\(\hat{m}_1 \) \hspace{1cm} 0...01 \in \Sigma^{k-1} \hspace{1cm} 0...01 \in \Sigma^{k-1} \)

\(\hat{m}_{2k-1-1} \) \hspace{1cm} 1...11 \in \Sigma^{k-1} \hspace{1cm} 1...11 \in \Sigma^{k-1} \)

\([H(q_0)v_0 \mathbb{c}] \)

\([H(q_1)v_1 \mathbb{c}] \)

\([H(q_{2k-1-1})v_{2k-1-1} \mathbb{c}] \)

Bias \(q_0 \)

Bias \(q_1 \)

Bias \(q_{2k-1-1} \)

Figure: Biasing.
Figure: Example for Graph Walking, $k = 3$.
Encoding scheme: Some comments

- Constant bit-rate to constant bit-rate.
Encoding scheme: Some comments

- Constant bit-rate to constant bit-rate.
- The coding scheme asymptotically achieves capacity.
Encoding scheme: Some comments

- Constant bit-rate to constant bit-rate.
- The coding scheme asymptotically achieves capacity.
- The encoder may fail but \(\Pr_{\text{fail}} \rightarrow 0 \) as \(n \rightarrow \infty \).
Deterministic Encoders

- General, deterministic encoders.
Deterministic Encoders

- General, deterministic encoders.
- Finite memory and finite anticipation
Deterministic Encoders

- General, deterministic encoders.
- Finite memory and finite anticipation
- Γ is fat \rightarrow Γ can be shrunk.
Deterministic Encoders

- General, deterministic encoders.
- Finite memory and finite anticipation
- Γ is fat \rightarrow Γ can be shrunk.
- Let $\Gamma \subseteq \mathcal{P}(\Sigma^k)$ be closed and convex. If Γ is fat then

$$\operatorname{cap}(\Gamma) = \log |\Sigma| - \inf_{\eta \in \Gamma} I(\eta)$$

where $I(\cdot)$ is given in terms of the K-L divergence.
Deterministic Encoders

- General, deterministic encoders.
- Finite memory and finite anticipation
- Γ is fat \rightarrow Γ can be shrunk.
- Let $\Gamma \subseteq \mathcal{P}(\Sigma^k)$ be closed and convex. If Γ is fat then

$$\text{cap}(\Gamma) = \log |\Sigma| - \inf_{\eta \in \Gamma} I(\eta)$$

where $I(\cdot)$ is given in terms of the K-L divergence.

Theorem (Lind and Marcus (95), C.3)

Let $\phi : \Sigma^N \rightarrow X$ where $X = \phi(\Sigma^N)$ be an encoding function with finite memory and finite anticipation. Then X can be represented by a graph (sofic shift).
Deterministic Encoders

- General, deterministic encoders.
- Finite memory and finite anticipation
- Γ is fat $\rightarrow\Gamma$ can be shrunk.
- Let $\Gamma \subseteq \mathcal{P}(\Sigma^k)$ be closed and convex. If Γ is fat then

$$\text{cap}(\Gamma) = \log |\Sigma| - \inf_{\eta \in \Gamma} I(\eta)$$

where $I(\cdot)$ is given in terms of the K-L divergence.

Theorem (Lind and Marcus (95), C.3)

Let $\phi : \Sigma^N \rightarrow X$ where $X = \phi(\Sigma^N)$ be an encoding function with finite memory and finite anticipation. Then X can be represented by a graph (sofic shift).

- Convert a SCS into a fully constrained system.
Sequence of fully-constrained systems.
Sequence of fully-constrained systems.

Fat condition Γ can be shrunk slightly.
Sequence of fully-constrained systems.

Fat condition $\rightarrow \Gamma$ can be shrunk slightly.

Definition

For any $\epsilon > 0$ define

$$\Gamma_\epsilon := \left\{ \eta \in \mathcal{P}(\Sigma^k) : \inf_{\mu \in \Gamma^c} ||\eta - \mu||_{TV} > \epsilon \right\}$$

where $|| \cdot ||_{TV}$ is the total variation norm.
Sequence of fully-constrained systems.

Fat condition $\rightarrow \Gamma$ can be shrunk slightly.

Definition

For any $\epsilon > 0$ define

$$\Gamma_\epsilon := \left\{ \eta \in \mathcal{P}(\Sigma^k) : \inf_{\mu \in \Gamma^c} \|\eta - \mu\|_{TV} > \epsilon \right\}$$

where $\| \cdot \|_{TV}$ is the total variation norm.

Γ-admissible $\epsilon \rightarrow \Gamma_\epsilon \neq \emptyset$ and fat.
Construction A

Let Γ be a fat SCS, for every $m \in \mathbb{N}$ we construct $\mathcal{R}_m(\Gamma) \subseteq \Sigma^*$ by defining

$$\mathcal{R}_m(\Gamma) := (\mathcal{B}_m(\Gamma))^*.$$
Construction A

Let Γ be a fat SCS, for every $m \in \mathbb{N}$ we construct $\mathcal{R}_m(\Gamma) \subseteq \Sigma^*$ by defining

$$\mathcal{R}_m(\Gamma) := (\mathcal{B}_m(\Gamma))^*.$$

Theorem

Let Γ be a fat SCS. Then for any Γ-admissible $\epsilon > 0$, there exists $M_\epsilon \in \mathbb{N}$ such that for all $m > M_\epsilon$

$$\mathcal{R}_m(\Gamma_\epsilon) \subseteq \mathcal{B}(\Gamma).$$
 Characteristics of Block Encoders

\[\lim_{m \to \infty} \text{cap}(\mathcal{R}_m(\Gamma_\epsilon)) = \text{cap}(\mathcal{B}(\Gamma_\epsilon)). \]
Characteristics of Block Encoders

\[\lim_{m \to \infty} \text{cap}(\mathcal{R}_m(\Gamma_\epsilon)) = \text{cap}(\mathcal{B}(\Gamma_\epsilon)). \]
\[\lim_{\epsilon \to 0} \text{cap}(\mathcal{B}(\Gamma_\epsilon)) = \text{cap}(\mathcal{B}(\Gamma)). \]
Characteristics of Block Encoders

- \(\lim_{m \to \infty} \text{cap}(\mathcal{R}_m(\Gamma_\epsilon)) = \text{cap}(\mathcal{B}(\Gamma_\epsilon)). \)
- \(\lim_{\epsilon \to 0} \text{cap}(\mathcal{B}(\Gamma_\epsilon)) = \text{cap}(\mathcal{B}(\Gamma)). \)
- \(\exists \) block-encoders with rate \(\to \text{cap}(\mathcal{B}(\Gamma)). \)
Characteristics of Block Encoders

- \(\lim_{m \to \infty} \text{cap}(\mathcal{R}_m(\Gamma_\epsilon)) = \text{cap}(\mathcal{B}(\Gamma_\epsilon)) \).
- \(\lim_{\epsilon \to 0} \text{cap}(\mathcal{B}(\Gamma_\epsilon)) = \text{cap}(\mathcal{B}(\Gamma)) \).
- \(\exists \text{ block-encoders with rate } \to \text{cap}(\mathcal{B}(\Gamma)) \).
- \(M_\epsilon = \Omega(\frac{1}{\epsilon}) \).
Sliding Window Encoders
Let Γ be a fat SCS. For every $m \in \mathbb{N}$ we construct $N_m(\Gamma) \subseteq \Sigma^*$ by defining

$$N_m(\Gamma) := \{ w \in \Sigma^* : \text{sub}_m(w) \subseteq \mathcal{B}(\Gamma) \}.$$
Construction B

Let Γ be a fat SCS. For every $m \in \mathbb{N}$ we construct $N_m(\Gamma) \subseteq \Sigma^*$ by defining

$$N_m(\Gamma) := \{ w \in \Sigma^* : \text{sub}_m(w) \subseteq \mathcal{B}(\Gamma) \}.$$

Theorem

Let Γ be a fat SCS. Then for any Γ-admissible $\epsilon > 0$ and for every $m \geq k$ we have

$$N_m(\Gamma_{\epsilon}) \subseteq^e \mathcal{B}(\Gamma)$$

where \subseteq^e means $|N_m(\Gamma_{\epsilon}) \setminus \mathcal{B}(\Gamma)| < \infty$.
Characteristics of Sliding Window Encoders

\[\limsup_{m \to \infty} \text{cap}(N_m(\Gamma)) = \text{cap}(B(\Gamma)). \]
Characteristics of Sliding Window Encoders

- \(\limsup_{m \to \infty} \text{cap}(N_m(\Gamma)) = \text{cap}(B(\Gamma)) \).
- \(N_m(\Gamma_\epsilon) \subseteq^e B(\Gamma) \) depends only on the length of the word and not on \(m \).
Example

Consider the $(0, 1, 0.205)$-RLL SCS in which $\Sigma = \{0, 1\}$ and $\Gamma = \{\mu \in \mathcal{P}(\Sigma^2) : \mu(11) \leq 0.205\}.$
Consider the $(0, 1, 0.205)$-RLL SCS in which $\Sigma = \{0, 1\}$ and $\Gamma = \{\mu \in \mathcal{P}(\Sigma^2) : \mu(11) \leq 0.205\}$.

$\text{cap}(\Gamma) \approx 0.98$.

Ohad Elishco

SCS
Example for Cons. A and Cons. B

Example

Consider the $(0, 1, 0.205)$-RLL SCS in which $\Sigma = \{0, 1\}$ and $\Gamma = \{\mu \in \mathcal{P}(\Sigma^2) : \mu(11) \leq 0.205\}$.

- $\text{cap}(\Gamma) \approx 0.98$.
- target rate: $\frac{3}{4}$.

Ohad Elishco
SCS
Consider the $\left(0, 1, 0.205\right)$-RLL SCS in which $\Sigma = \{0, 1\}$ and
$\Gamma = \{\mu \in \mathcal{P}(\Sigma^2) : \mu(11) \leq 0.205\}$.

- $\text{cap}(\Gamma) \approx 0.98$.
- target rate: $\frac{3}{4}$.
- $\epsilon = 0.005$
Example for Cons. A and Cons. B

Example

Consider the \((0, 1, 0.205)\)-RLL SCS in which \(\Sigma = \{0, 1\}\) and \(\Gamma = \{\mu \in \mathcal{P}(\Sigma^2) : \mu(11) \leq 0.205\}\).

- \(\text{cap}(\Gamma) \approx 0.98\).
- Target rate: \(\frac{3}{4}\).
- \(\epsilon = 0.005\)

<table>
<thead>
<tr>
<th></th>
<th>Cons. A</th>
<th>Cons. B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>81</td>
<td>5</td>
</tr>
<tr>
<td>states</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>edges</td>
<td>Exponential</td>
<td>32</td>
</tr>
</tbody>
</table>
The Dual Question

- Can we approach a SCS’s capacity from above?
The Dual Question

• Can we approach a SCS’s capacity from above?

Theorem

Let $\mu \in \mathcal{P}(\Sigma^k)$ be a positive, shift invariant, and rational measure. Then for every $\alpha \in \Sigma^*$ there exists $\beta \in \Sigma^*$ such that $fr_{\alpha\beta}^k = \mu$ and the first $(k - 1)$ tuple equals the last.
The Dual Question

- Can we approach a SCS’s capacity from above?

Theorem

Let $\mu \in \mathcal{P}(\Sigma^k)$ be a positive, shift invariant, and rational measure. Then for every $\alpha \in \Sigma^*$ there exists $\beta \in \Sigma^*$ such that $fr_{\alpha\beta}^k = \mu$ and the first $(k - 1)$ tuple equals the last.

sketch.

- Let $\alpha \in \Sigma^*$.
The Dual Question

- Can we approach a SCS’s capacity from above?

Theorem

Let \(\mu \in P(\Sigma^k) \) be a positive, shift invariant, and rational measure. Then for every \(\alpha \in \Sigma^* \) there exists \(\beta \in \Sigma^* \) such that \(\text{fr}_{\alpha\beta}^k = \mu \) and the first \((k - 1)\) tuple equals the last.

Sketch.

- Let \(\alpha \in \Sigma^* \).
- We construct a De-Bruijn graph with multiple parallel edges, according to \(\mu \).
The Dual Question

- Can we approach a SCS’s capacity from above?

Theorem

Let $\mu \in \mathcal{P}(\Sigma^k)$ be a positive, shift invariant, and rational measure. Then for every $\alpha \in \Sigma^*$ there exists $\beta \in \Sigma^*$ such that $fr^k_{\alpha\beta} = \mu$ and the first $(k - 1)$ tuple equals the last.

Sketch.

- Let $\alpha \in \Sigma^*$.
- We construct a De-Bruijn graph with multiple parallel edges, according to μ.
- The graph is strongly connected.
The Dual Question

- Can we approach a SCS’s capacity from above?

Theorem

Let $\mu \in \mathcal{P}(\Sigma^k)$ be a positive, shift invariant, and rational measure. Then for every $\alpha \in \Sigma^*$ there exists $\beta \in \Sigma^*$ such that $\text{fr}^k_{\alpha\beta} = \mu$ and the first $(k - 1)$ tuple equals the last.

sketch.

- Let $\alpha \in \Sigma^*$.
- We construct a De-Bruijn graph with multiple parallel edges, according to μ.
- The graph is strongly connected.
- There exists an Eulerian cycle with α as a subword.
The Dual Question

Corollary

Let Γ be a fat SCS. Then for every $\alpha \in \Sigma^*$ there exists $\beta \in \Sigma^*$ such that $\alpha \beta \in \mathcal{B}(\Gamma)$.
Corollary

Let Γ be a fat SCS. Then for every $\alpha \in \Sigma^*$ there exists $\beta \in \Sigma^*$ such that $\alpha \beta \in \mathcal{B}(\Gamma)$.

Corollary

Let Γ be a fat SCS. Let Γ' be a fully constrained system such that $\mathcal{B}(\Gamma) \subseteq \mathcal{B}(\Gamma')$. Then $\mathcal{B}(\Gamma') = \Sigma^*$.
The fat condition means there are no 0 restrictions.
The fat condition means there are no 0 restrictions.

A SCS Γ is relatively fat (RF) if it is fat with respect to the allowed k-tuples probabilities.
Combining SCS with Combinatorial Constraints

- The fat condition means there are no 0 restrictions.
- A SCS Γ is relatively fat (RF) if it is fat with respect to the allowed k-tuples probabilities.
- Construction A does not work.
The fat condition means there are no 0 restrictions. A SCS Γ is relatively fat (RF) if it is fat with respect to the allowed k-tuples probabilities. Construction A does not work. Construction B works.
Let $\Gamma \subseteq \mathcal{P}_{si}(\Sigma^k)$ be a SCS. The essential part of Γ is defined as

$$ess(\Gamma) := \{ \eta \in \Gamma : \mathcal{B}(\eta) \neq \emptyset \}.$$
Definition

Let $\Gamma \subseteq \mathcal{P}_{si}(\Sigma^k)$ be a SCS. The essential part of Γ is defined as

$$ess(\Gamma) := \{ \eta \in \Gamma : B(\eta) \neq \emptyset \}.$$

Definition

For a SCS Γ, let $G_{ess}(\Gamma)$ be the graph with $V = \Sigma^{k-1}$ and each $e \in E$ corresponds to a k-tuple. $e \in E$ if $\exists \eta \in ess(\Gamma)$ with $\eta(e) > 0$.
Let $\Gamma \subseteq P_{si}(\Sigma^k)$ be a SCS, then

$$\mathcal{B}(\Gamma) \subseteq \mathcal{L}(G_{ess}(\Gamma)).$$
Theorem

Let $\Gamma \subseteq P_{si}(\Sigma^k)$ be a SCS, then

$$B(\Gamma) \subseteq L(G_{ess}(\Gamma)).$$

Theorem

Let $\Gamma \subseteq P_{si}(\Sigma^k)$ be a convex SCS. Then $L(G_{ess}(\Gamma))$ is the unique smallest fully constrained system containing $B(\Gamma)$.
Theorem

Let \(\Gamma \subseteq P_{si}(\Sigma^k) \) be a SCS, then

\[\mathcal{B}(\Gamma) \subseteq \mathcal{L}(G_{ess}(\Gamma)). \]

Theorem

Let \(\Gamma \subseteq P_{si}(\Sigma^k) \) be a convex SCS. Then \(\mathcal{L}(G_{ess}(\Gamma)) \) is the unique smallest fully constrained system containing \(\mathcal{B}(\Gamma) \).

- In general \(\text{cap}(\Gamma) \leq \text{cap}(\mathcal{L}(G_{ess}(\Gamma))). \)
Theorem

Let $\Gamma \subseteq P_{si}(\Sigma^k)$ be a SCS, then

$$\mathcal{B}(\Gamma) \subseteq \mathcal{L}(G_{ess}(\Gamma)).$$

Theorem

Let $\Gamma \subseteq P_{si}(\Sigma^k)$ be a convex SCS. Then $\mathcal{L}(G_{ess}(\Gamma))$ is the unique smallest fully constrained system containing $\mathcal{B}(\Gamma)$.

- In general $\text{cap}(\Gamma) \leq \text{cap}(\mathcal{L}(G_{ess}(\Gamma)))$.
- $\text{cap}(\Gamma) = 0$ iff $\text{cap}(\mathcal{L}(G_{ess}(\Gamma))) = 0$.

Ohad Elishco

SCS
Current Research

- d-dimensional SCS
Current Research

- \(d\)-dimensional SCS
- Multiple definitions
Current Research

- d-dimensional SCS
- Multiple definitions
- Capacity equality
Current Research

- d-dimensional SCS
- Multiple definitions
- Capacity equality
- Independence entropy
Current Research

- d-dimensional SCS
- Multiple definitions
- Capacity equality
- Independence entropy
- Independence entropy and capacity equality for high dimensions.
Thank You!