Codes for Constrained Periodicity

Adir Kobovich*, Orian Leitersdorf*, Daniella Bar-Lev, and Eitan Yaakobi

Technion - Israel Institute of Technology

* Equal Contribution

Overview

Overview

Constrained Periodicity

01010010010011100010

$1 \quad \ell=9$
(period 3)

Iterative Construction

Near-Optimal Alg:

Algorithm 1 Encoder
while exists periodic window do Fix identified window.
end while

Extentions

Constrained Periodicity

Problem:

- Input: $x \in \Sigma^{n}$
- Output: $y \in \Sigma^{n+r}$ without periodicity in all windows (r = \# redundancy symbols)

Periodicity

- $x \in \Sigma^{\ell}$ is p-periodic if $\forall i \leq \ell-p: x_{i}=x_{i+p}$

(period 3)
- Kernel: repetitive portion (e.g., 100)

Least-Period-Avoiding (LPA) Constraint

- $x \in \Sigma^{n+r}$ is ℓ-window p-least-period avoiding (LPA) if all windows do not have periodicity $<p$ (where ℓ, p may depend on n)

$n+r=20$
$11001101001000011000 \in \operatorname{LPA}(\ell=9, p=4)$

LPA Lower Bound

- Let $a(n, \ell, p)$ be the number of words that satisfy the constraint,

$$
a(n, \ell, p) \geq 2^{n} \cdot\left(1-\frac{n}{2^{\ell-p}}\right)
$$

- Notice: $\ell=\lceil\log n\rceil+p+1 \Rightarrow a(n, \ell, p) \geq 2^{n-1}$
- Corollary: there exists a code with a single bit of redundancy ($r=1$) for $\ell=\lceil\log n\rceil+p+1$

Least-Period-Avoiding (LPA) Constraint

- $x \in \Sigma^{n+r}$ is ℓ-window p-least-period avoiding (LPA) if all windows do not have periodicity $<p$ (where ℓ, p may depend on n)

Work	Minimal ℓ	\# Redundancy Symbols	Time Complexity
Chee et al.	$\log n+p+1$	1	Existence Proof

Least-Period-Avoiding (LPA) Constraint

- $x \in \Sigma^{n+r}$ is ℓ-window p-least-period avoiding (LPA) if all windows do not have periodicity $<p$ (where ℓ, p may depend on n)

Work	Minimal ℓ	\# Redundancy Symbols	Time Complexity
Chee et al.	$\log n+p+1$	1	Existence Proof
Sima and Bruck	$\log n+3 p-2$	$p+1$	$O\left(n^{2} p \log n\right)$

Least-Period-Avoiding (LPA) Constraint

- $x \in \Sigma^{n+r}$ is ℓ-window p-least-period avoiding (LPA) if all windows do not have periodicity $<p$ (where ℓ, p may depend on n)

Work	Minimal ℓ	\# Redundancy Symbols	Time Complexity
Chee et al.	$\log n+p+1$	1	Existence Proof
Sima and Bruck	$\log n+3 p-2$	$p+1$	$O\left(n^{2} p \log n\right)$
This Work	$\log n+p+1$	1	$O(n)$ average

Related Works: RLL Constraint

- $x \in \Sigma^{n+r}$ satisfies the k-run-length-limited (RLL) constraint if all k windows are non-zero (where k may depend on n)
- Applicative to many other codes, such as non-overlapping codes (codes with disjoint non-trivial prefixes and suffixes)
- Construction: iteratively removes zero windows, monotonically progressing through the message

Overview

Constrained Periodicity

$1 \quad \ell=9 —$
(period 3)

Iterative Construction

Algorithm 1 Encoder
1: while exists periodic window do
2: Fix identified window.
3: end while

Near-optimal ℓ using 1 redundancy symbol

Extentions

Given ℓ, use minimal redundancy symbols

Overview

Constrained Periodicity

$1 \quad \ell=9 \quad 1$ (period 3)

Iterative Construction

Algorithm 1 Encoder
while exists periodic window do Fix identified window.
end while

Near-optimal ℓ using 1 redundancy symbol

Extentions

Given ℓ, use minimal redundancy symbols

Iterative Construction

- "As long as there exists a periodic window, fix it"

```
Algorithm 1 Encoder
    Append 1 to x
    while exists periodic window in \(\mathbf{x}\) do
            Encode window and index, append to end
            Append 0 to \(\mathbf{x}\)
    end while
```


Iterative Construction

- "As long as there exists a periodic window, fix it"

```
Algorithm 1 Encoder
    Append 1 to x
    while exists periodic window in \(\mathbf{x}\) do
            Encode window and index, append to end
            Append 0 to \(\mathbf{x}\)
    end while
```


Iterative Construction

- "As long as there exists a periodic window, fix it"

```
Algorithm 1 Encoder
    Append 1 to x
    while exists periodic window in \(\mathbf{x}\) do
            Encode window and index, append to end
            Append 0 to \(\mathbf{x}\)
    end while
```


Iterative Construction

- "As long as there exists a periodic window, fix it"

Algorithm 1 Encoder
 Append 1 to \mathbf{x}
 Append 0 to \mathbf{x}
 end while

while exists periodic window in \mathbf{x} do
3: Encode window and index, append to end

Iterative Construction

- "As long as there exists a periodic window, fix it"

Algorithm 1 Encoder
 Append 1 to x
 Append 0 to \mathbf{x}
 end while

while exists periodic window in \mathbf{x} do
Encode window and index, append to end

Iterative Construction

- "As long as there exists a periodic window, fix it"

Algorithm 1 Encoder
 Append 1 to \mathbf{x}
 Append 0 to \mathbf{x}
 end while

while exists periodic window in \mathbf{x} do
Encode window and index, append to end

Convergence?

- Why should it converge?

Convergence?

- Why should it converge?
- Non-monotonic progression!

Convergence?

- Why should it converge?
- Non-monotonic progression!

111111010101010

- Self-loops!

Convergence?

- Why should it converge?
- Non-monotonic progression!
- Self-loops!

111111010101010

Step 2

Convergence?

- Why should it converge?
- Non-monotonic progression!
- Self-loops!

Convergence?

- Why should it converge?
- Non-monotonic progression!
- Self-loops!
- Answer: invertability

Graph Interpretation

- Nodes: $V=\Sigma^{n+1}$
- S : ends with 1
- Green: satisfy LPA
- Edges: one iteration of the while loop = edge

Iterative Construction - Convergence

"Starts in S and continues until no periodicity"

[^0]1: Append 1 to \mathbf{x}
2: while exists periodic window in \mathbf{x} do
3: Encode window and index, append to end
4: Append 0 to \mathbf{x}
5: end while

- Observation 1: In-degree of all nodes ≤ 1
- Observation 2: All loops
Contains Periodicity

No Periodicity
(LPA vector) must be in $V \backslash S$

Iterative Construction - Time Complexity

- Encoding requires $O(1)$ iterations on average:
- Observation: paths taken by different inputs are disjoint
- Number of nodes in graph is bounded by 2^{n+1}
- Number of different inputs is 2^{n}

$$
\frac{1}{2^{n}} \cdot \sum_{x \in \Sigma^{n}} t(x) \leq \frac{1}{2^{n}} \cdot\left(2^{n+1}\right)=2=O(1)
$$

- Overall, $O(n)$ average time encoding/decoding

Iterative Construction - Summary

- Attains theoretical results of Chee et al.

Work	Minimal ℓ	\# Redundancy Symbols	Time Complexity
Chee et al.	$\log n+p+1$	1	Existence Proof
Sima and Bruck	$\log n+3 p-2$	$p+1$	$O\left(n^{2} p \log n\right)$
This Work	$\log n+p+1$	1	$O(n)$ average

Is the Minimal ℓ Optimal?

- Reduction from PA constraint to run-length-limited (RLL) constraint:

$$
x_{i} \Longrightarrow x_{i} \oplus x_{i+p}
$$

as p-periodic windows become zero runs.

- Using bound on RLL, we get an upper bound on the LPA constraint:
- Corollary: $\ell \geq \log (n)+p-4.5$ for a single redundancy bit

Iterative Construction - Summary

- Near-optimal ℓ for single-symbol redundancy:

Work	Minimal ℓ	\# Redundancy Symbols	Time Complexity
Chee et al.	$\log n+p+1$	1	Existence Proof
Sima and Bruck	$\log n+3 p-2$	$p+1$	$O\left(n^{2} p \log n\right)$
This Work	$\log n+p+1$	1	$O(n)$ average
Lower Bound	$\log n+p-4.5$	1	-

Overview

Constrained Periodicity

$1 \quad \ell=9 —$
(period 3)

Iterative Construction

Algorithm 1 Encoder
1: while exists periodic window do
2: Fix identified window.
3: end while

Near-optimal ℓ using 1 redundancy symbol

Extentions

Given ℓ, use minimal redundancy symbols

Block Constructions

- Seek to support smaller ℓ with additional redundancy
- Solution: split into k blocks to "reduce $\log n$ to $\log \frac{n}{k}$ "

01010010010011100010

Block Constructions

- Seek to support smaller ℓ with additional redundancy
- Solution: split into k blocks to "reduce $\log n$ to $\log \frac{n}{k}$ "

Block Constructions

- Seek to support smaller ℓ with additional redundancy
- Solution: split into k blocks to "reduce $\log n$ to $\log \frac{n}{k}$ "

Block Constructions

- Seek to support smaller ℓ with additional redundancy
- Solution: split into k blocks to "reduce $\log n$ to $\log \frac{n}{k}$ "

Block Construction 1

- Observation: concatenation of ℓ-LPA codes is a 2ℓ-LPA code
- Any 2ℓ window contains at least ℓ bits from a single block
- Substring of periodic string is also periodic
- Construction: concat. blocks of the iterative construction
- Redundancy: k bits

Block Construction 2

- Lemma: for any $s \in \Sigma^{\ell}$, there exists $a \in \sum$ such that sa contanis no periods $\leq\lfloor\ell / 2\rfloor+2$
- Construction: Concatenate blocks with 2 bits in between
- Redundancy: $3 k-2$ bits

Block Constructions - Results

Work	Minimal ℓ	\# Redundancy Symbols	Time Complexity
Chee et al.	$\log n+p+1$	1	Existence Proof
Sima and Bruck	$\log n+3 p-2$	$p+1$	$O\left(n^{2} p \log n\right)$
This Work	$\log n+p+1$	1	$O(n)$ average
Lower Bound	$\log n+p-4.5$	1	-
This Work	$2\left(\log \left(\frac{n}{k}\right)+p+1\right)$	k	$O(n)$ average
This Work	$\log \left(\frac{n}{k}\right)+p+1$	$3 k-2$	$O(n)$ average

Periodicity - Conclusion

Iterative Construction

Near-Optimal Alg:

Algorithm 1 Encoder
while exists periodic window do
Fix identified window.
end while

Extentions

Parametric Constraint

Problem:

- Input: $x \in \Sigma^{n}$
- Output: $y \in \sum^{n+r}$ without windows that satisfy some parametric property ($r=$ \# redundancy symbols)

Constraint-Avoiding (CA) Vector

- $x \in \Sigma^{n+r}$ is an ℓ-window S-avoiding vector (CA) if all windows are not in S (where ℓ, S may depend on n)

$n+r=20$
$11001101001000011000 \in C A(\ell=9, S=\{100100100\})$

CA Lower Bound

- Let $a(n, \ell, S)$ be the number of words that satisfy the constraint,

$$
a(n, \ell, S) \geq 2^{n} \cdot\left(1-\frac{n}{2^{\ell-\log |S|}}\right)
$$

- Notice: $|S| \leq 2^{\ell} \cdot \frac{1}{2 n} \Rightarrow a(n, \ell, S) \geq 2^{n-1}$
- Corollary: there exists a code with a single bit of redundancy ($r=1$) for $|S| \leq 2^{\ell} \cdot \frac{1}{2 n}$

CA Iterative Construction

- Given injective function $\phi: S \rightarrow \Sigma^{\ell \prime}$ such that $\ell^{\prime}=\ell-\lceil\log n\rceil-1$, we get a construction with:
- 1 redundancy symbol
- $O(n \cdot f(\ell))$ time for $f(\ell)$ the time complexity of ϕ
- For any S with $|S| \leq 2^{\ell} \cdot \frac{1}{2 n}$, there always exists a trivial $\phi: S \rightarrow \Sigma^{\ell \prime}$:
- 1 redundancy symbol
- $O(\ell \cdot \log |S|)$ time and $O(S)$ space (using binary search)

Future Work

Worst-Case Complexity

Universal Constrained Code

$x \in \sum^{n+r}$ is $\ell(n)$-window $S(n)$ avoiding if all windows do not belong to $S(n)$

Thanks!

The research was Funded by the European Union. Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or European Research Council.

[^0]: Algorithm 1 Encoder

