
Codes for Constrained
Periodicity

Adir Kobovich*, Orian Leitersdorf*,
Daniella Bar-Lev, and Eitan Yaakobi

Technion – Israel Institute of Technology

* Equal Contribution

Overview

Constrained Periodicity Iterative Construction Extentions

Near-Optimal Alg:

2Generalizing Beyond Periodicity

Overview

Constrained Periodicity Iterative Construction Extentions

Near-Optimal Alg:

3

Constrained Periodicity

Problem:
• Input: 𝑥 ∈ Σ!

• Output: 𝑦 ∈ Σ!"# without periodicity in all windows
(𝑟 = # 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 𝑠𝑦𝑚𝑏𝑜𝑙𝑠)

4

Periodicity

• 𝑥 ∈ Σℓ is 𝑝-periodic if ∀𝑖 ≤ ℓ − 𝑝 ∶ 𝑥% = 𝑥%"&

• Kernel: repetitive portion (e.g., 100)

5

Least-Period-Avoiding (LPA) Constraint

• 𝑥 ∈ Σ!"# is ℓ-window 𝑝-least-period avoiding (LPA) if all windows do
not have periodicity < 𝒑 (where ℓ, 𝑝 may depend on 𝑛)

6

∉ 𝑳𝑷𝑨(ℓ = 𝟗, 𝒑 = 𝟒)

∈ 𝑳𝑷𝑨(ℓ = 𝟗, 𝒑 = 𝟒)

LPA Lower Bound

• Let 𝑎(𝑛, ℓ, 𝑝) be the number of words that satisfy the constraint,

𝑎 𝑛, ℓ, 𝑝 ≥ 2! ⋅ 1 −
𝑛

2ℓ'&

• Notice: ℓ = log 𝑛 + 𝑝 + 1 ⟹ 𝑎 𝑛, ℓ, 𝑝 ≥ 2!'(

• Corollary: there exists a code with a single bit of redundancy (𝑟 = 1)
for ℓ = log 𝑛 + 𝑝 + 1

7
Y. M. Chee et al., “Coding for racetrack memories,” IEEE TIT, 2018.

Least-Period-Avoiding (LPA) Constraint

• 𝑥 ∈ Σ!"# is ℓ-window 𝑝-least-period avoiding (LPA) if all windows do
not have periodicity < 𝒑 (where ℓ, 𝑝 may depend on 𝑛)

Y. M. Chee et al., “Coding for racetrack memories,” IEEE TIT, 2018.

Work Minimal ℓ # Redundancy
Symbols Time Complexity

Chee et al. log 𝑛 + 𝑝 + 1 1 Existence Proof

8

Least-Period-Avoiding (LPA) Constraint

• 𝑥 ∈ Σ!"# is ℓ-window 𝑝-least-period avoiding (LPA) if all windows do
not have periodicity < 𝒑 (where ℓ, 𝑝 may depend on 𝑛)

Y. M. Chee et al., “Coding for racetrack memories,” IEEE TIT, 2018.
J. Sima and J. Bruck, “Correcting deletions in multiple-heads racetrack memories,” in IEEE ISIT, 2019.

Work Minimal ℓ # Redundancy
Symbols Time Complexity

Chee et al. log 𝑛 + 𝑝 + 1 1 Existence Proof

Sima and Bruck log 𝑛 + 3𝑝 − 2 𝑝 + 1 𝑂(𝑛!𝑝 log 𝑛)

9

Least-Period-Avoiding (LPA) Constraint

• 𝑥 ∈ Σ!"# is ℓ-window 𝑝-least-period avoiding (LPA) if all windows do
not have periodicity < 𝒑 (where ℓ, 𝑝 may depend on 𝑛)

Y. M. Chee et al., “Coding for racetrack memories,” IEEE TIT, 2018.
J. Sima and J. Bruck, “Correcting deletions in multiple-heads racetrack memories,” in IEEE ISIT, 2019.

Work Minimal ℓ # Redundancy
Symbols Time Complexity

Chee et al. log 𝑛 + 𝑝 + 1 1 Existence Proof

Sima and Bruck log 𝑛 + 3𝑝 − 2 𝑝 + 1 𝑂(𝑛!𝑝 log 𝑛)

This Work log 𝑛 + 𝑝 + 1 1 𝑂(𝑛) average

10

Related Works: RLL Constraint

• 𝑥 ∈ Σ!"# satisfies the 𝑘-run-length-limited (RLL) constraint if all 𝑘-
windows are non-zero (where 𝑘 may depend on 𝑛)
• Applicative to many other codes, such as non-overlapping codes

(codes with disjoint non-trivial prefixes and suffixes)
• Construction: iteratively removes zero windows, monotonically

progressing through the message

M. Levy and E. Yaakobi, “Mutually uncorrelated codes for DNA storage,” IEEE TIT, 2019.
S. R. Blackburn, “Non-Overlapping Codes,” IEEE TIT, 2015.

11

Overview

Constrained Periodicity Iterative Construction Extentions

Near-optimal ℓ using 1
redundancy symbol

Given ℓ, use minimal
redundancy symbols

12

Overview

Constrained Periodicity Iterative Construction Extentions

Near-optimal ℓ using 1
redundancy symbol

Given ℓ, use minimal
redundancy symbols

13

Iterative Construction

• “As long as there exists a
periodic window, fix it”

14

Iterative Construction

• “As long as there exists a
periodic window, fix it”

15

Iterative Construction

• “As long as there exists a
periodic window, fix it”

16

Iterative Construction

• “As long as there exists a
periodic window, fix it”

17

Kernel
(𝒑′ bits)

𝒑′ Encoding
(𝒑 − 𝒑" + 𝟏 bits)

𝒊
(⌈𝐥𝐨𝐠 𝒏⌉ bits)

Marker
(𝟏 bit)

Iterative Construction

• “As long as there exists a
periodic window, fix it”

18

Iterative Construction

• “As long as there exists a
periodic window, fix it”

19

Convergence?

• Why should it converge?

20

Convergence?

• Why should it converge?
• Non-monotonic

progression!

21

Convergence?

• Why should it converge?
• Non-monotonic

progression!
• Self-loops!

22

Convergence?

• Why should it converge?
• Non-monotonic

progression!
• Self-loops!

23

Convergence?

• Why should it converge?
• Non-monotonic

progression!
• Self-loops!

24

Convergence?

• Why should it converge?
• Non-monotonic

progression!
• Self-loops!

• Answer: invertability

25

Graph Interpretation

26

• Nodes: 𝑉 = Σ!"(
• 𝑺: ends with 1
• Green: satisfy LPA

• Edges: one iteration of
the while loop = edge

Iterative Construction – Convergence

“Starts in 𝑆 and continues
until no periodicity”

• Observation 1: In-degree
of all nodes ≤ 1
• Observation 2: All loops

must be in 𝑉 ∖ 𝑆
27

Iterative Construction – Time Complexity

• Encoding requires 𝑂(1) iterations on average:
• Observation: paths taken by different inputs are disjoint
• Number of nodes in graph is bounded by 2#$%

• Number of different inputs is 2#

1
2#
⋅ <
𝒙∈(!

𝑡 𝒙 ≤
1
2#
⋅ 2#$% = 2 = 𝑂(1)

• Overall, 𝑂(𝑛) average time encoding/decoding

28

Iterative Construction – Summary

• Attains theoretical results of Chee et al.

Work Minimal ℓ # Redundancy
Symbols Time Complexity

Chee et al. log 𝑛 + 𝑝 + 1 1 Existence Proof

Sima and Bruck log 𝑛 + 3𝑝 − 2 𝑝 + 1 𝑂(𝑛!𝑝 log 𝑛)

This Work log 𝑛 + 𝑝 + 1 1 𝑂(𝑛) average

Y. M. Chee et al., “Coding for racetrack memories,” IEEE TIT, 2018.
J. Sima and J. Bruck, “Correcting deletions in multiple-heads racetrack memories,” in IEEE ISIT, 2019.

29

Is the Minimal ℓ Optimal?

• Reduction from PA constraint to run-length-limited (RLL) constraint:
𝑥% ⟹ 𝑥% ⊕𝑥%"&

as 𝑝-periodic windows become zero runs.
• Using bound on RLL, we get an upper bound on the LPA constraint:

𝑎 𝑛, ℓ, 𝑝 ≤ 2!')⋅
!'+ℓ"&'(
+ℓ"#$% , 𝑐 =

log 𝑒
8

• Corollary: ℓ ≥ log 𝑛 + 𝑝 − 4.5 for a single redundancy bit

M. Levy and E. Yaakobi, “Mutually uncorrelated codes for DNA storage,” IEEE TIT, 2019.
30

Iterative Construction – Summary

• Near-optimal ℓ for single-symbol redundancy:

Work Minimal ℓ # Redundancy
Symbols Time Complexity

Chee et al. log 𝑛 + 𝑝 + 1 1 Existence Proof

Sima and Bruck log 𝑛 + 3𝑝 − 2 𝑝 + 1 𝑂(𝑛!𝑝 log 𝑛)

This Work log 𝑛 + 𝑝 + 1 1 𝑂(𝑛) average

Lower Bound log 𝑛 + 𝑝 − 4.5 1 —

Y. M. Chee et al., “Coding for racetrack memories,” IEEE TIT, 2018.
J. Sima and J. Bruck, “Correcting deletions in multiple-heads racetrack memories,” in IEEE ISIT, 2019.

31

Overview

Constrained Periodicity Iterative Construction Extentions

Near-optimal ℓ using 1
redundancy symbol

Given ℓ, use minimal
redundancy symbols

32

Block Constructions

• Seek to support smaller ℓ with additional redundancy

• Solution: split into 𝑘 blocks to “reduce log 𝑛 to log !
,

”

33

Block Constructions

34

• Seek to support smaller ℓ with additional redundancy

• Solution: split into 𝑘 blocks to “reduce log 𝑛 to log !
,

”

Block Constructions

35

• Seek to support smaller ℓ with additional redundancy

• Solution: split into 𝑘 blocks to “reduce log 𝑛 to log !
,

”

Block Constructions

36

• Seek to support smaller ℓ with additional redundancy

• Solution: split into 𝑘 blocks to “reduce log 𝑛 to log !
,

”

Block Construction 1

• Observation: concatenation of
ℓ-LPA codes is a 2ℓ-LPA code
• Any 2ℓ window contains at least ℓ

bits from a single block
• Substring of periodic string is also

periodic

• Construction: concat. blocks of
the iterative construction
• Redundancy: 𝑘 bits

37

Block Construction 2

• Lemma: for any 𝒔 ∈ Σℓ, there
exists 𝑎 ∈ Σ such that 𝒔𝑎
contanis no periods ≤ ℓ/2 + 2
• Construction: Concatenate

blocks with 2 bits in between
• Redundancy: 3𝑘 − 2 bits

38

Block Constructions – Results

Work Minimal ℓ # Redundancy
Symbols Time Complexity

Chee et al. log 𝑛 + 𝑝 + 1 1 Existence Proof

Sima and Bruck log 𝑛 + 3𝑝 − 2 𝑝 + 1 𝑂(𝑛!𝑝 log 𝑛)

This Work log 𝑛 + 𝑝 + 1 1 𝑂(𝑛) average

Lower Bound log 𝑛 + 𝑝 − 4.5 1 —

This Work 2 log
𝑛
𝑘
+ 𝑝 + 1 𝑘 𝑂(𝑛) average

This Work log
𝑛
𝑘
+ 𝑝 + 1 3𝑘 − 2 𝑂(𝑛) average

Y. M. Chee et al., “Coding for racetrack memories,” IEEE TIT, 2018.
J. Sima and J. Bruck, “Correcting deletions in multiple-heads racetrack memories,” in IEEE ISIT, 2019.

39

Periodicity – Conclusion

40

Constrained Periodicity Iterative Construction Extentions

Near-Optimal Alg:

Can we generalize beyond periodicity?

Parametric Constraint

Problem:
• Input: 𝑥 ∈ Σ!

• Output: 𝑦 ∈ Σ!"# without windows that satisfy some
parametric property (𝑟 = # 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 𝑠𝑦𝑚𝑏𝑜𝑙𝑠)

41

Constraint-Avoiding (CA) Vector

• 𝑥 ∈ Σ!"# is an ℓ-window 𝑺-avoiding vector (CA) if all windows are not
in 𝑺 (where ℓ, 𝑆 may depend on 𝑛)

∉ 𝑪𝑨(ℓ = 𝟗, 𝑺 = {𝟏𝟎𝟎𝟏𝟎𝟎𝟏𝟎𝟎})

∈ 𝑪𝑨(ℓ = 𝟗, 𝑺 = {𝟏𝟎𝟎𝟏𝟎𝟎𝟏𝟎𝟎})

42

CA Lower Bound

• Let 𝑎(𝑛, ℓ, 𝑆) be the number of words that satisfy the constraint,

𝑎 𝑛, ℓ, 𝑆 ≥ 2! ⋅ 1 −
𝑛

2ℓ'-./ |1|

• Notice: 𝑆 ≤ 2ℓ ⋅ (
+!
⟹ 𝑎 𝑛, ℓ, 𝑆 ≥ 2!'(

• Corollary: there exists a code with a single bit of redundancy (𝑟 = 1)
for 𝑆 ≤ 2ℓ ⋅ (

+!

43

CA Iterative Construction

• Given injective function 𝜙: S → Σℓ2 such that ℓ2 = ℓ − log 𝑛 − 1,
we get a construction with:
• 1 redundancy symbol
• 𝑂(𝑛 ⋅ 𝑓 ℓ) time for 𝑓(ℓ) the time complexity of 𝜙

• For any 𝑆 with 𝑆 ≤ 2ℓ ⋅ (
+!

, there always exists a trivial 𝜙: S → Σℓ2:
• 1 redundancy symbol
• 𝑂(ℓ ⋅ log 𝑆) time and 𝑂(𝑆) space (using binary search)

44

Future Work

Universal Constrained CodeWorst-Case Complexity

Thanks!
The research was Funded by the European Union. Views and opinions expressed are however those of the
authors only and do not necessarily reflect those of the European Union or European Research Council. 45

𝑥 ∈ Σ!"# is ℓ(𝑛)-window 𝑆(𝑛)-
avoiding if all windows do not
belong to 𝑆(𝑛)

