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DNA storage

Why store information in DNA strands?

® Enormous information density: 5 grams can store 8-102!
bits
® Extreme longevity: Messages from mammoths...

® Working prototypes starting from 2012, world record
~ 200MB [Organick et al 2018]

Still costly: ~ $500 per 1IMB of data

Check out: “Information- Theoretic Foundations of DNA
Data Storage” [Shomorony and Heckel, FnT, 2022]
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The DNA storage channel model — writing /encoder

e Alphabet X, in real-life X = {A,C,G, T}
® A DNA molecule is a sequence ¥ € X (order matters)

¢ A codeword is a multiset of M molecules (no order)

® A codebook is a set of different codewords C = {xM ()}
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The DNA storage channel model — reading

e Channel output is a multiset of N molecules (order does
not matter)

YRV = (Y. YAy

* QOutput molecule Y,” is generated as:

©® Sample one of the M molecules of M | independently,
with replacement
® Sequencing =’ to obtain Y;* — Modeled as a DMC

W (yk o) = TT Wil =)

1€[L]
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The DNA storage channel model — decoding

e The decoder is a mapping (YX)N — [|C]]
® Equivalently, a set of the decision regions D = {D(j)}¢(ic|]
® D(j) is the decision region of the jth codeword

D(j) == {y"N: DY) = j}
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The DNA storage channel model — channel

writing reading
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Figure: DNA storage model (Courtesy of Shomrony and Heckel)
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The DNA storage channel model — parameters

DNA := («a,3,W) is a sequence indexed by the number of
molecules M

Coverage depth parameter o := %

Molecule length scaling: g := log#M >1

DMC sequencing channel W

Coding rate

_ log|C]|

R LM
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The DNA storage channel model — parameters

® DNA := («,3,W) is a sequence indexed by the number of
molecules M

e Coverage depth parameter o := %

® Molecule length scaling: §:= logLM >1
® DMC sequencing channel W
® Coding rate
log|C|
R=
LM

® Problem: What is the Shannon capacity of DNA?
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Previous works

e Initial ideas: [MacKay, Sayer, and Goldman 2015], [Heckel,
Shomorony, Ramchandran and Tse, 2017]

¢ Coding-theoretic papers: [Kovacevic and Tan 2018], [Lenz
et al 2019], [Sima, Raviv and Bruck 2021], [Song, Cai, and
Immink 2020] [Tang and Farnoud 2021]

® The foundations of our work:

® The model, first capacity results, basic ideas [Shomorony
and Heckel, 2021]

® Refinement to a multinomial model [Lenz, Siegel,
Wachter-Zeh, Yaakobi, 2019-2020]

® Both works only for W = BSC(w) (essentially)
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Our strategy

e Error probability analysis of
@® Encoder: Standard random coding ensemble
® Decoder: High complexity, “optimal-like”

® Result:

@ A bound on the reliability function
® Capacity bound is the vanishing point of the reliability
function bound
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The binomial channel

® The d-order binomial extension of a DMC: V: A — B is the
DMC

VEpe | a] = HVb | a)

for a € A, b € B¢
® Interpretation: “d independent observations on an input
symbol a € A over V”
® Notation:
® J(Px,V) is the mutual information of a DMC V with input

distribution Px
® 714(d) is the Poisson PMF with parameter «
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Capacity lower bound (achievable)

Theorem
The capacity of the DNA channel is lower bounded as

PR
C(DNA) > PXHGI%)((X)dEXI\;—Wa(d) I(Px, W) — 3 (1—74(0)).
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Capacity lower bound (achievable)

Theorem
The capacity of the DNA channel is lower bounded as

C(DNA) > max Zwa(d)-I(PX,W@d)—;(1—7ra(0)).

o PxeP(X) den+

® Improves best known results: No constraints on «, 8, W'!
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Interpretation

1
max 7o (d) - I(Px, W) — = (1 —74(0
Pxep(x)d§+ (d)-I(Px ) ﬁ( (0))
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Interpretation

1
max 7o (d) - I(Px, W) — = (1 —7,,(0
Pxep(x)d§+ (d)-1(Px ) ﬁ( (0))

® The mutual information of a molecule sampled d times
e The MI is that of d-order binomial channel W®4
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Interpretation

1
o(d) - I(Px, W& — — (1—7,(0
P 2, T P W = (0]

e A loss term due to the lack of molecule order
® The cost of (implicit) “indexing”

14/58



Interpretation

1
max 7o (d) - I(Px, W) — = (1 =7, (0
Pxepm%; (d)-I(Px ) ﬁ( (0))

e Optimal input distribution should compromise all orders
LQ/GBd
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distribution P% is uniform?

e Identify a DMC V: A — B with its probability transition
matrix (].A| rows, |B| columns)

® Notation: Vg, is a |A| rows, [By| columns submatrix

® Symmetric channels

e A DMC V is symmetric if its rows are permutations of

each other and so are the columns [Cover and Thomas]
® For example: A modulo-additive channel B=A® C

e A DMC V is weakly symmetric if its rows are
permutations and the columns have equal sums [Cover and
Thomas]

® A DMC V is symmetric in Gallager’s sense if there
exists a partition B = (J; B; such that V|, is a symmetric
DMC for all ¢

® In all these cases Py for V' is uniform
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A digression — binomial extension symmetric channels

® Back to the DNA channel: We need to maximize
Y den+ Ta(d) - I(Px, WEBd)

e Problem: If W is symmetric then W% is not necessarily
symmetric (not even in Gallager’s sense)

e Example:
1 2 3 45
1 4 3 2 5 1
Wi=—-12 51 3 4
15 3 45 1 2
5 1 4 2 3

but VVl692 is not symmetric
® The capacity achieving input distribution is not uniform
Proposition
Let V: A— B be a modulo-additive DMC. Then Vo is
symmetric in Gallager’s sense for all d € N*.
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e Also: The counterexample had |A| =|B| =5, but |X|=4
for practical DNA channels

Proposition

If |X| <4, |Y| <|X|, and W is a symmetric channel in
Gallager’s sense, then the lower bound on the capacity is
achieved by the uniform input distribution.

® Proof:

® A detailed inspection of all possible channels of |X| < 4,
V<[]
® A taxonomy of small doubly-permutation atoms
® Open questions:

® When does operations such as binomial extension preserve
symmetry?
® How can this systematically be proven?
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Error probability bound — basic definitions

® ¢, represents the fraction of molecules sampled d € N
times

0y >0, ZE: 0,=1
deN

® Denote

R({04}) =304 1 PX,W@d)—;(l—HO)
deN

® Can be interpreted as “instantaneous capacity”
® Note: This is a notation only

® di1(pl| ¢) is the binary KL divergence
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Reliability function bound

Theorem
It holds that

1
lim inf i logpe(C,D) >

To(d)

M—o00
max inf Z 1-— 20 -dkr, Ou
Px €P(X) {0a}aen g ‘el ! 1- Zie[d] 0;

where the infimum is subject to

R({04}) < R.
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Theorem
It holds that

1
lim inf i logpe(C,D) >

M —oc0

04
max inf 1-— 0;-d
PxeP(X) {9d}deNdEZN ( z‘g[;j] ) KL (1 - Zie[d] 0;

Ta(d) )
1= Zz‘e[d} Ta (i)
where the infimum is subject to

R({04}) < R.

® The exponent vanishes when 65 = m,(d) for all d € Ny
® = (Capacity lower bound follows as a corollary

C(DNA) > R({ma(d)}).

19/58



Interpretation

® The exponent is dominated by outage R({6;}) < R

20/58



Interpretation

® The exponent is dominated by outage R({6;}) < R
® Qutage is caused by under-sampled molecules

20/58



Interpretation

® The exponent is dominated by outage R({6;}) < R

® Qutage is caused by under-sampled molecules

e(M)

e Error probability decays as e~ and not

e—@(ML) — B—G(MlogM)!

20/58



Interpretation

® The exponent is dominated by outage R({6;}) < R
® Qutage is caused by under-sampled molecules

e(M)

e Error probability decays as e~ and not

e—OML) _ ,—6(MlogM))

® Proof:

20/58



Interpretation

® The exponent is dominated by outage R({6;}) < R
® Qutage is caused by under-sampled molecules

e(M)

e Error probability decays as e~ and not

e—OML) _ ,—6(MlogM))

® Proof:
@ Standard IID random coding ensemble

20/58



Interpretation

® The exponent is dominated by outage R({6;}) < R

® Qutage is caused by under-sampled molecules

e(M)

e Error probability decays as e~ and not

e—OML) _ ,—6(MlogM))

® Proof:

@ Standard IID random coding ensemble
® High complexity, “optimal-like”, decoder
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e Encoder:
® No explicit indexing of molecules
® No inner/outer code
® Decoder:
® No greedy clustering as in [Lenz et al 2019]

® (Clustering requires defining a metric — suitable to
BSC/symmetric channels
® Hard clustering is the source of limited regime of («, 8, W)

® Bonus: The decoder is universal w.r.t. W
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Figure: Sampling types
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® A new notion of sampling types:
e UN is the molecule index vector — Uy, is the molecule
sampled at the nth draw
® SM is the molecule duplicate vector — Sy, is the number of
times the mth molecule was sampled
® QN*1 is the amplification vector — Qg is the number of
molecules sampled d times

Related via the empirical count operator N

QNJrl:JV(SM):,/V(Q)(UN)

The analysis requires estimating asymptotic sizes of
sampling type classes, e.g.

T = {u e N D () = gV}

Estimation via restricted partition numbers [Hardy and
Ramanujan, Uspensky, and Rademacher]
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Proof snippets — channel model

e For all UV with a given ¢Vt amplification vector, the
channel operation is “equivalent”

e A mixture (over orders d) of binomial channels W%¢, with
mixing coefficients 1%

£ [yLN | xLM} - N+1629:(M N)P [UN ) yq(]gll}
q )
1 N

XD

(2)
uNequJr

Dd | 1.d
7P rdHoW P’“M) | “wwﬂ
. qN+1 —|
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Proof snippets — decoder

e The decoder is based on a metric (score)

#ML = argmax \(

zLMeC

YLN ‘ wLM)

® Recall: Molecule U,, was sampled at time n € [N]. A
sampling vector is UN € [M]V

® The metric is a maximization over all sampling events

A(yLN ‘ HELM) — m%x)\(YNL,xML;uN)
u
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® The conditional score:
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Proof snippets — decoder

® The conditional score:

A" [ 2™ N) —(1—6p)Mlog M

+ Z O4L- [ ( LA N)HPX)"i‘Ipd(xLM LNuN)(A Bd)}
de[N+1]

® Based on the empirical mutual information (MMI)
® Does not depend on the channel W (universal)
® Adapted for the IID ensemble using a KL divergence term
® Fixed-composition codewords is problematic:
® A full codeword may have fixed composition, but not each
molecule
® Fixed-composition molecules is too restrictive
® A correction term: Not all sampling events have the same
probability (“sampling types”)
® Inspired by the analysis of [Csiszdr 1980] for joint
source-channel coding
26/58
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Proof snippets — error probability analysis

e Condition on a given amplification vector QN1 = ¢N+1

® Random coding analysis of the error probability of the
universal decoder

® Method of types (on steroids...)

® An obstacle:
® The order d € [N 4 1] is unbounded as N increases
® The maximal output alphabet size of {V®d}d€[N] increases

with blocklength!

® Solution: A careful truncation argument
® Assuming g =0 for all d >d
® ( is optimized later on

27/58
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R i= 3 M ape w5 (1- )

de[d+1]

then the conditional error probability decays as e ©(ML)
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Proof snippets — error probability analysis

® The conditional analysis shows that if

1
R<Tz(¢"):= > gj,'f(PLW@d)—ﬁ(l—qo)
deld+1]

then the conditional error probability decays as e ©(ML)

e [t holds
PIPS(QY ) < B = =00

® Hence

pe(C,D) <PI'(Q ") > R]-e @M 4 PII(Q") < R]-1

A “bad” sampling event dominates the error
probability!
* Evaluation of P[I'7(Q" 1) < R]:
° Tl]\l;} vector QNT1 is the empirical count of a multinomial
S
® The multinomial distribution is Poissonized
28/58 ® Typically for expectations, here for tails
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Theorem

Assume the ideal sampling of Sy, = « for all m € [M] with
probability 1. Then,

o 1 _

W g oePee )

>  max min D Px)+D « W be

2 X sya il e (Qx [| Px)+D(Qyex || 1Qx)

+ 1D HPX)—i—IQ(X;Ya)—;—R .
+

29/58



Error exponent for fixed uniform sampling

® Suppose that each molecule is equally sampled
Sm=a=4 for all m € [M]

Theorem

Assume the ideal sampling of Sy, = « for all m € [M] with
probability 1. Then,

o 1 _
lﬁn_%&f VI logpe(C, D)

>  max min D Px)+D o W oe
2 X sya il e (Qx [| Px)+D(Qyex || 1Qx)

1
+|D(Qa || Px)+1o(X;Y*) ——=—R| .
ER
® Despite loss of order, the error probability decays as
e—@(ML) — e—@(MlogM)!
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Outline

® A converse bound
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Capacity upper bound (converse) — definitions

® The common-input MI deficit
CID(Px,V)=2-1(Px,V)—I(Px,V%?)

® Intuitively: The difference in mutual information for two
independent inputs vs. identical inputs

® The d-order excess-rate term by

Qq(B,Px, W) := {min{;, ; — C|D(PX,W@d)H

+
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Capacity upper bound (converse)

Theorem
Assume that mingey yey W (y | x) > 0. Then, the capacity of the
DNA channel is upper bounded as

C(DNA) < max > ma(d): [[(Px, W) +Qu(8,Px. W)
P)(EP(./\’)d€N+

(1=7a(0)).

@l
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Capacity upper bound (converse)

Theorem
Assume that mingey yey W (y | x) > 0. Then, the capacity of the
DNA channel is upper bounded as

C(DNA) < max > ma(d): [[(Px, W) +Qu(8,Px. W)
P)(EP(./\’)d€N+

(1=7a(0)).

@l

e Similar to the lower bound, except for Qg4(-)
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Tightness of the bound

Corollary
Let

P% (o, 5,WW) € argmax Z 7o (d)- [I(PX,WEBd) —i—Qd(B,PX,W)} ,

Px€P(X) geN+

and let

Ber(a, W) := min {5' b2 CBPy (o, 5.7, W) }

Then, for all > Ber(a, W)

CONA) = 3 mald) 1 (P (e B W), W), WE) = 2 (1= 7o 0).
deNt
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Proof idea

Warning: The fulle proof is very complicated and long
® Builds on the ideas of [Shomrony and Heckel 2021], [Lenz et
al 2020)
Goal: By Fano’s inequality, bounding I(X*M;YLN) for
any input distribution

An easy converse

I(XIM. yINYy < max 7o (d) - I(Px, W&
( )_PXGP(X)dezI\;+ (d)-I(Px )

Problem: Missing the —%(1 — 7o (0)) term

® Does a decoder of an optimal system must know which
molecules have been sampled after correct decoding?

® Does a molecule must contain implicit information on its
index?
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® Option 1: Identical molecules X = X3
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IID
L PX
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® Challenge: Characterizing optimal distribution on
molecules. Why?
® [llustration: M =2
® Option 1: Identical molecules X = XL 1o Px

® Low MI I(Px,W®?)
® Loss of order is immaterial
® Option 2: Independent molecules X1 1 PX J_LX2 o Px
* High MI 2I(Pyx,W)
® Loss of order causes loss of ,%(1 —7a(0))

® Optimal choice depends on S and W

® In the regime where capacity is known, independent
molecules are optimal

35/58
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Proof outline — “far” and “close” molecules

® Challenge: What are “similar” and “independent”
molecules?
¢ In [Lenz et al 2020] for a BSC with crossover w:
* Molecules are different if dp («f,2) > 4wl
® In our work: Soft similarity measure, based on conditional
typical sets
® The conditional typical set T, ([W]|z&) C V¥ has high
probability when Y2 ~ WE(. | zf)
e rlis “far” (“independent”) from x{ if 7 ([W] | z{) has low
probability when Y ~ WE(. | 2l)
® The required distance is sub-linear in L
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Proof outline — properties of “far” and “close” molecules
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permuting DNA channel
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Proof outline — properties of “far” and “close” molecules

® Let a set of O(M) pairwise “far” molecules be input to a
permuting DNA channel

® Establish that observing the input and output molecules
gain information on the channel permutation

® The equivocation given input and output is negligible
compared to unconditional entropy

® Let a pair of “close” molecules be given

® Establish that the mutual information is essentially as if
they are identical I(Px,V ®?)
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Proof outline — bounding mutual information

® Upper bound the mutual information I(X*M;y M) for
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e Upper bound the mutual information I(XM;y M) for
Fano’s argument

® Use a fixed composition codebook

® A genie-aided decoder [Lenz et al 2019], that cluster output
molecules to Y M
= Establish an upper bound on I(

® Condition of QV*t1: A subset of the input molecules is
pairwise “far”; the other subset is a “close” neighbor in the
first set

® The tightest bound obtained for all pairwise “far” molecules

XLM. YLM)
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Proof outline — a clustering decoder

L \\\‘ y2 =Z2

Figure: A clustering decoder
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40/58

Bound the average MI over QV 1! via Poissonization

“Single-letterization” is done in two stages (from ML to L
and from L to 1)

Removing the fixed composition assumption

Obtaining a bound in which Pyx is optimized once for all
orders d
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A prospective refinement of the upper bound

® Recall: The CID is defined with a pair of molecules
CID(Px,V)=2-1(Px,V)—I(Px,V%?)

® [dea: Generalize to a scattering measure for triplets of
molecules

® Why not quadruplets? quintuplets?
® The game is (most likely) not worth the (our) candle

41/58
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The assumption on the channel

Recall: mingex yey W(y | z) > 0 is a qualifying condition
for the converse

Technically: Originates from the use of the blowing-up
lemma in the proof

Example: binary erasure sequencing channel

Fundamentally: If W (y | z) = 0 then molecule ordering is
easier

Open problem: Not obvious if this is just a technical
condition that can be removed



A side result: MI for IID v.s. fixed composition inputs

Lemma

Let Py € Pk (A) be a type for length K. Also let AK ~ Py IID
and AK ~ Uniform[Tx (P4)], and let BX and BY be their
outputs over a DMC. Then

0 < I(AX; BE) - 1(AK; BX) = O(VK -10gK).
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A side result: MI for IID v.s. fixed composition inputs

Lemma

Let Py € Pk (A) be a type for length K. Also let AK ~ Py IID
and AK ~ Uniform[Tx (P4)], and let BX and BY be their
outputs over a DMC. Then

0 < I(AX; BE) - 1(AK; BX) = O(VK -10gK).

® Proof:

® Bounding entropy differences via Ornstein’s d-distance
[Polyanskiy and Wu 2016]

® Bounding d-distance by a KL divergence via Marton’s
transportation inequality [Marton 1996)

¢ A refined bound appears in [Tang and Polyanskiy 2022]

43/58
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Modulo-additive channels

Proposition
Let W be a modulo-additive channel, let P)((umf) be the uniform
distribution over X. Then, for all

S 2

—aprPy w)

it holds that

C(DNA) = Y wa(d)-I(P)((umf),W@d)—;(l—wa(O)).
deNt
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Binary symmetric channels

e For a BSC with crossover probability w

5> ° .
log2 — hy (2w(1 —w))
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Binary symmetric channels

e For a BSC with crossover probability w

5> ° .
log2 — hy (2w(1 —w))

¢ [Lenz et al 2019-2020]: Only for w < 1/8

2

B> Pori= log2 — hy(4w)”
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Binary symmetric channels — critical molecule length
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Figure: Comparison between [Lenz 2019] and our result
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Numerical computation

e Given input distribution Py, all bounds can be accurately
computed by convex optimization
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Numerical computation

e Given input distribution Py, all bounds can be accurately
computed by convex optimization

e Example: Asymmetric channel |[X|=|Y| =4

94 2 2 2

1 2 70 25 3
Wowl#)=100"1 3 2 85 10
10 5 5 80

¢ Uniform input distribution Px = (1/4,1/4,1/4,1/4)
(sub-optimal)

48 /58



A numerical example — capacity

1.2r

0.8r

0.6

0.4

—Theorem 5
—Theorem 9

0.2 : : : :
1 2 3 4 5 6 7 8

B
Figure: Upper and lower bounds on C(DNA(5,3,W))) as a function of
B (in nats).
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A numerical example — reliability function

25

0 0.2 0.4 0.6 0.8 1 1.2
R

Figure: Right: Lower bound on the reliability function
E*(R,DNA(5,8,Wp),{M}) as a function of R (in nats).
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® Encoder: A coded-index scheme
* An inner code B ¢ XL is partitioned to M sub-codes
(L)
{Bm }mE[M]
® An outer-code encodes a message to a sequence x
zk e B
® Decoder:

® Tnner code decoding: Each output molecule yfl is decoded
to a codeword in B(L)

® An erasure is declared if there is no consensus on x

® Note: No (substantial) gain from multi-draws

LM ghere

L

m

® Quter code decoding
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Assumptions on the code

® A “black-box” inner code
® Inner code rate: Rp = %log|B(L)| >1/p.

@® Vanishing inner code error probability: pey(B(%)) = e—OL°)
where ¢ > 0.

e A random outer code

55/58



Main result — random coding and expurgated bounds

Theorem

56/58
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Theorem

e If N/M =0O(1) then

1 R
. . _ > _——_—
ipint 3y oseCor. D) 2 6 (1= 7

_N
e M

for any R < (Rb—l/ﬁ)(l—e_%).
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_N
e M

liminf—% logpe(Car, Dar) = dy (1 - Rbi/lg

M—o0

for any R < (Rb—l/ﬁ)(l—e_%).
e If N/M =w(1) then

1
l}gglof—ﬁlog pe(Car,Dar)
%[1—%1/3]’ wr < 2(Ry—1/B)
> MLIR,—1/8—R], 2(R,—1/B) < i)z <4(Ry—1/B)
Hl—m%m}’ 3z > 4Ry —1/6)
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Main result — random coding and expurgated bounds
Theorem

e If N/M =0O(1) then

_N
e M

liminf—% logpe(Car, Dar) = dy (1 - Rbi/lg

M—o0

for any R < (Rb—l/ﬁ)(l—e_%).
e If N/M =w(1) then

o 1
liminf ——=log pe(Car, Dar)

R N
P1-mls], A <2®-1/p)

> MLIR,—1/8—R], 2(R,—1/B) < {; <4(R,—1/B)

%[1—&)%/5}7 Wz > 4Ry —1/P)

for any R < R, —1/p.
® Based on random coding and expurgated analysis
56/58
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Main result — discussion

©® A phase transition between N = O (M) and N =w(M)
® Expurgation improves in the regime - > 4(R, —1/p)
® A slow decrease O( 17) to the asymptotic scaling

O Establishing tlghtness of the bound seems challenging

® Poissonization is used in the proof — tight for expectations
but not for tails
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Conclusion

e A simplified analysis of a DNA storage scheme
® Towards practical encoding/decoding methods

e Error probability decays as e~ ©(Y)

® Increasing coverage depth is vital for improving error
probability scaling
N. Weinberger

“Error Probability Bounds for Coded-Index DNA Storage

Systems,”

IT-T, November 2022

Thank You !
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