The DNA Storage Channel: Capacity and Error Probability Bounds

Nir Weinberger and Neri Merhav

Technion - Israel Institute of Technology, Israel

Outline

(1) Introduction
(2) Achievable bounds
(3) A converse bound
4. Modulo additive channels
(5) A simplified setting

DNA storage

- Why store information in DNA strands?

DNA storage

- Why store information in DNA strands?
- Enormous information density: 5 grams can store $8 \cdot 10^{21}$ bits

DNA storage

- Why store information in DNA strands?
- Enormous information density: 5 grams can store $8 \cdot 10^{21}$ bits
- Extreme longevity: Messages from mammoths...

DNA storage

- Why store information in DNA strands?
- Enormous information density: 5 grams can store $8 \cdot 10^{21}$ bits
- Extreme longevity: Messages from mammoths...
- Working prototypes starting from 2012, world record $\sim 200 \mathrm{MB}$ [Organick et al 2018]

DNA storage

- Why store information in DNA strands?
- Enormous information density: 5 grams can store $8 \cdot 10^{21}$ bits
- Extreme longevity: Messages from mammoths...
- Working prototypes starting from 2012, world record $\sim 200 \mathrm{MB}$ [Organick et al 2018]
- Still costly: $\sim \$ 500$ per 1 MB of data

DNA storage

- Why store information in DNA strands?
- Enormous information density: 5 grams can store $8 \cdot 10^{21}$ bits
- Extreme longevity: Messages from mammoths...
- Working prototypes starting from 2012, world record $\sim 200 \mathrm{MB}$ [Organick et al 2018]
- Still costly: $\sim \$ 500$ per 1 MB of data
- Check out: "Information-Theoretic Foundations of DNA Data Storage" [Shomorony and Heckel, FnT, 2022]

The DNA storage channel model - writing/encoder

- Alphabet \mathcal{X}, in real-life $\mathcal{X}=\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$

The DNA storage channel model - writing/encoder

- Alphabet \mathcal{X}, in real-life $\mathcal{X}=\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$
- A DNA molecule is a sequence $x^{L} \in \mathcal{X}^{L}$ (order matters)

The DNA storage channel model - writing/encoder

- Alphabet \mathcal{X}, in real-life $\mathcal{X}=\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$
- A DNA molecule is a sequence $x^{L} \in \mathcal{X}^{L}$ (order matters)
- A codeword is a multiset of M molecules (no order)

$$
x^{L M}=\left(x_{0}^{L}, \ldots x_{M-1}^{L}\right)
$$

The DNA storage channel model - writing/encoder

- Alphabet \mathcal{X}, in real-life $\mathcal{X}=\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$
- A DNA molecule is a sequence $x^{L} \in \mathcal{X}^{L}$ (order matters)
- A codeword is a multiset of M molecules (no order)

$$
x^{L M}=\left(x_{0}^{L}, \ldots x_{M-1}^{L}\right)
$$

- A codebook is a set of different codewords $\mathcal{C}=\left\{x^{L M}(j)\right\}$

The DNA storage channel model - reading

- Channel output is a multiset of N molecules (order does not matter)

$$
Y^{L N}=\left(Y_{0}^{L}, \ldots, Y_{N-1}^{L}\right)
$$

The DNA storage channel model - reading

- Channel output is a multiset of N molecules (order does not matter)

$$
Y^{L N}=\left(Y_{0}^{L}, \ldots, Y_{N-1}^{L}\right)
$$

- Output molecule Y_{n}^{L} is generated as:

The DNA storage channel model - reading

- Channel output is a multiset of N molecules (order does not matter)

$$
Y^{L N}=\left(Y_{0}^{L}, \ldots, Y_{N-1}^{L}\right)
$$

- Output molecule Y_{n}^{L} is generated as:
(1) Sample one of the M molecules of $x^{L M}$, independently, with replacement

The DNA storage channel model - reading

- Channel output is a multiset of N molecules (order does not matter)

$$
Y^{L N}=\left(Y_{0}^{L}, \ldots, Y_{N-1}^{L}\right)
$$

- Output molecule Y_{n}^{L} is generated as:
(1) Sample one of the M molecules of $x^{L M}$, independently, with replacement
(2) Sequencing x^{L} to obtain $Y_{n}^{L}-$ Modeled as a DMC

$$
W\left(y_{n}^{L} \mid x^{L}\right)=\prod_{i \in[L]} W\left(y_{i} \mid x_{i}\right)
$$

The DNA storage channel model - decoding

- The decoder is a mapping $\left(\mathcal{Y}^{L}\right)^{N} \rightarrow[|\mathcal{C}|]$

The DNA storage channel model - decoding

- The decoder is a mapping $\left(\mathcal{Y}^{L}\right)^{N} \rightarrow[|\mathcal{C}|]$
- Equivalently, a set of the decision regions $\mathcal{D}=\{\mathcal{D}(j)\}_{j \in[\mathcal{C}]]}$

The DNA storage channel model - decoding

- The decoder is a mapping $\left(\mathcal{Y}^{L}\right)^{N} \rightarrow[|\mathcal{C}|]$
- Equivalently, a set of the decision regions $\mathcal{D}=\{\mathcal{D}(j)\}_{j \in[\mid \mathcal{C}]]}$
- $\mathcal{D}(j)$ is the decision region of the j th codeword

$$
\mathcal{D}(j):=\left\{y^{L N}: \mathcal{D}\left(y^{L N}\right)=j\right\}
$$

The DNA storage channel model - channel

writing
reading

Figure: DNA storage model (Courtesy of Shomrony and Heckel)

The DNA storage channel model - parameters

- DNA $:=(\alpha, \beta, W)$ is a sequence indexed by the number of molecules M

The DNA storage channel model - parameters

- DNA $:=(\alpha, \beta, W)$ is a sequence indexed by the number of molecules M
- Coverage depth parameter $\alpha:=\frac{N}{M}$

The DNA storage channel model - parameters

- DNA $:=(\alpha, \beta, W)$ is a sequence indexed by the number of molecules M
- Coverage depth parameter $\alpha:=\frac{N}{M}$
- Molecule length scaling: $\beta:=\frac{L}{\log M}>1$

The DNA storage channel model - parameters

- DNA $:=(\alpha, \beta, W)$ is a sequence indexed by the number of molecules M
- Coverage depth parameter $\alpha:=\frac{N}{M}$
- Molecule length scaling: $\beta:=\frac{L}{\log M}>1$
- DMC sequencing channel W

The DNA storage channel model - parameters

- DNA $:=(\alpha, \beta, W)$ is a sequence indexed by the number of molecules M
- Coverage depth parameter $\alpha:=\frac{N}{M}$
- Molecule length scaling: $\beta:=\frac{L}{\log M}>1$
- DMC sequencing channel W
- Coding rate

$$
R=\frac{\log |\mathcal{C}|}{L M}
$$

The DNA storage channel model - parameters

- DNA $:=(\alpha, \beta, W)$ is a sequence indexed by the number of molecules M
- Coverage depth parameter $\alpha:=\frac{N}{M}$
- Molecule length scaling: $\beta:=\frac{L}{\log M}>1$
- DMC sequencing channel W
- Coding rate

$$
R=\frac{\log |\mathcal{C}|}{L M}
$$

- Problem: What is the Shannon capacity of DNA?

Previous works

- Initial ideas: [MacKay, Sayer, and Goldman 2015], [Heckel, Shomorony, Ramchandran and Tse, 2017]

Previous works

- Initial ideas: [MacKay, Sayer, and Goldman 2015], [Heckel, Shomorony, Ramchandran and Tse, 2017]
- Coding-theoretic papers: [Kovacevic and Tan 2018], [Lenz et al 2019], [Sima, Raviv and Bruck 2021], [Song, Cai, and Immink 2020] [Tang and Farnoud 2021]

Previous works

- Initial ideas: [MacKay, Sayer, and Goldman 2015], [Heckel, Shomorony, Ramchandran and Tse, 2017]
- Coding-theoretic papers: [Kovacevic and Tan 2018], [Lenz et al 2019], [Sima, Raviv and Bruck 2021], [Song, Cai, and Immink 2020] [Tang and Farnoud 2021]
- The foundations of our work:

Previous works

- Initial ideas: [MacKay, Sayer, and Goldman 2015], [Heckel, Shomorony, Ramchandran and Tse, 2017]
- Coding-theoretic papers: [Kovacevic and Tan 2018], [Lenz et al 2019], [Sima, Raviv and Bruck 2021], [Song, Cai, and Immink 2020] [Tang and Farnoud 2021]
- The foundations of our work:
- The model, first capacity results, basic ideas [Shomorony and Heckel, 2021]

Previous works

- Initial ideas: [MacKay, Sayer, and Goldman 2015], [Heckel, Shomorony, Ramchandran and Tse, 2017]
- Coding-theoretic papers: [Kovacevic and Tan 2018], [Lenz et al 2019], [Sima, Raviv and Bruck 2021], [Song, Cai, and Immink 2020] [Tang and Farnoud 2021]
- The foundations of our work:
- The model, first capacity results, basic ideas [Shomorony and Heckel, 2021]
- Refinement to a multinomial model [Lenz, Siegel, Wachter-Zeh, Yaakobi, 2019-2020]

Previous works

- Initial ideas: [MacKay, Sayer, and Goldman 2015], [Heckel, Shomorony, Ramchandran and Tse, 2017]
- Coding-theoretic papers: [Kovacevic and Tan 2018], [Lenz et al 2019], [Sima, Raviv and Bruck 2021], [Song, Cai, and Immink 2020] [Tang and Farnoud 2021]
- The foundations of our work:
- The model, first capacity results, basic ideas [Shomorony and Heckel, 2021]
- Refinement to a multinomial model [Lenz, Siegel, Wachter-Zeh, Yaakobi, 2019-2020]
- Both works only for $W=\operatorname{BSC}(w)$ (essentially)

Outline

(1) Introduction
(2) Achievable bounds
(3) A converse bound
(4) Modulo additive channels
(5) A simplified setting

Our strategy

- Error probability analysis of

Our strategy

- Error probability analysis of
(1) Encoder: Standard random coding ensemble

Our strategy

- Error probability analysis of
(1) Encoder: Standard random coding ensemble
(2) Decoder: High complexity, "optimal-like"

Our strategy

- Error probability analysis of
(1) Encoder: Standard random coding ensemble
(2) Decoder: High complexity, "optimal-like"
- Result:

Our strategy

- Error probability analysis of
(1) Encoder: Standard random coding ensemble
(2) Decoder: High complexity, "optimal-like"
- Result:
(1) A bound on the reliability function

Our strategy

- Error probability analysis of
(1) Encoder: Standard random coding ensemble
(2) Decoder: High complexity, "optimal-like"
- Result:
(1) A bound on the reliability function
(2) Capacity bound is the vanishing point of the reliability function bound

The binomial channel

- The d-order binomial extension of a DMC: $V: \mathcal{A} \rightarrow \mathcal{B}$ is the DMC

$$
V^{\oplus d}\left[b^{d} \mid a\right]=\prod_{i=0}^{d-1} V\left(b_{i} \mid a\right)
$$

for $a \in \mathcal{A}, b^{d} \in \mathcal{B}^{d}$

The binomial channel

- The d-order binomial extension of a DMC: $V: \mathcal{A} \rightarrow \mathcal{B}$ is the DMC

$$
V^{\oplus d}\left[b^{d} \mid a\right]=\prod_{i=0}^{d-1} V\left(b_{i} \mid a\right)
$$

for $a \in \mathcal{A}, b^{d} \in \mathcal{B}^{d}$

- Interpretation: " d independent observations on an input symbol $a \in \mathcal{A}$ over V "

The binomial channel

- The d-order binomial extension of a DMC: $V: \mathcal{A} \rightarrow \mathcal{B}$ is the DMC

$$
V^{\oplus d}\left[b^{d} \mid a\right]=\prod_{i=0}^{d-1} V\left(b_{i} \mid a\right)
$$

for $a \in \mathcal{A}, b^{d} \in \mathcal{B}^{d}$

- Interpretation: " d independent observations on an input symbol $a \in \mathcal{A}$ over V "
- Notation:

The binomial channel

- The d-order binomial extension of a DMC: $V: \mathcal{A} \rightarrow \mathcal{B}$ is the DMC

$$
V^{\oplus d}\left[b^{d} \mid a\right]=\prod_{i=0}^{d-1} V\left(b_{i} \mid a\right)
$$

for $a \in \mathcal{A}, b^{d} \in \mathcal{B}^{d}$

- Interpretation: " d independent observations on an input symbol $a \in \mathcal{A}$ over $V "$
- Notation:
- $I\left(P_{X}, V\right)$ is the mutual information of a DMC V with input distribution P_{X}

The binomial channel

- The d-order binomial extension of a DMC: $V: \mathcal{A} \rightarrow \mathcal{B}$ is the DMC

$$
V^{\oplus d}\left[b^{d} \mid a\right]=\prod_{i=0}^{d-1} V\left(b_{i} \mid a\right)
$$

for $a \in \mathcal{A}, b^{d} \in \mathcal{B}^{d}$

- Interpretation: " d independent observations on an input symbol $a \in \mathcal{A}$ over V "
- Notation:
- $I\left(P_{X}, V\right)$ is the mutual information of a DMC V with input distribution P_{X}
- $\pi_{\alpha}(d)$ is the Poisson PMF with parameter α

Capacity lower bound (achievable)

Theorem
The capacity of the DNA channel is lower bounded as

$$
C(\mathrm{DNA}) \geq \max _{P_{X} \in \mathcal{P}(\mathcal{X})} \sum_{d \in \mathbb{N}^{+}} \pi_{\alpha}(d) \cdot I\left(P_{X}, W^{\oplus d}\right)-\frac{1}{\beta}\left(1-\pi_{\alpha}(0)\right)
$$

Capacity lower bound (achievable)

Theorem
The capacity of the DNA channel is lower bounded as

$$
C(\mathrm{DNA}) \geq \max _{P_{X} \in \mathcal{P}(\mathcal{X})} \sum_{d \in \mathbb{N}^{+}} \pi_{\alpha}(d) \cdot I\left(P_{X}, W^{\oplus d}\right)-\frac{1}{\beta}\left(1-\pi_{\alpha}(0)\right)
$$

- Improves best known results: No constraints on α, β, W !

Interpretation

$$
\max _{P_{X} \in \mathcal{P}(\mathcal{X})} \sum_{d \in \mathbb{N}^{+}} \pi_{\alpha}(d) \cdot I\left(P_{X}, W^{\oplus d}\right)-\frac{1}{\beta}\left(1-\pi_{\alpha}(0)\right)
$$

- The relative number of molecules sampled d times

Interpretation

$$
\max _{P_{X} \in \mathcal{P}(\mathcal{X})} \sum_{d \in \mathbb{N}^{+}} \pi_{\alpha}(d) \cdot I\left(P_{X}, W^{\oplus d}\right)-\frac{1}{\beta}\left(1-\pi_{\alpha}(0)\right)
$$

- The relative number of molecules sampled d times
- The multinomial distribution is "Poissonized"

Interpretation

$$
\max _{P_{X} \in \mathcal{P}(\mathcal{X})} \sum_{d \in \mathbb{N}^{+}} \pi_{\alpha}(d) \cdot I\left(P_{X}, W^{\oplus d}\right)-\frac{1}{\beta}\left(1-\pi_{\alpha}(0)\right)
$$

- The mutual information of a molecule sampled d times

Interpretation

$$
\max _{P_{X} \in \mathcal{P}(\mathcal{X})} \sum_{d \in \mathbb{N}^{+}} \pi_{\alpha}(d) \cdot I\left(P_{X}, W^{\oplus d}\right)-\frac{1}{\beta}\left(1-\pi_{\alpha}(0)\right)
$$

- The mutual information of a molecule sampled d times
- The MI is that of d-order binomial channel $W^{\oplus d}$

Interpretation

$$
\max _{P_{X} \in \mathcal{P}(\mathcal{X})} \sum_{d \in \mathbb{N}^{+}} \pi_{\alpha}(d) \cdot I\left(P_{X}, W^{\oplus d}\right)-\frac{1}{\beta}\left(1-\pi_{\alpha}(0)\right)
$$

- A loss term due to the lack of molecule order

Interpretation

$$
\max _{P_{X} \in \mathcal{P}(\mathcal{X})} \sum_{d \in \mathbb{N}^{+}} \pi_{\alpha}(d) \cdot I\left(P_{X}, W^{\oplus d}\right)-\frac{1}{\beta}\left(1-\pi_{\alpha}(0)\right)
$$

- A loss term due to the lack of molecule order
- The cost of (implicit) "indexing"

Interpretation

$$
\max _{P_{X} \in \mathcal{P}(\mathcal{X})} \sum_{d \in \mathbb{N}^{+}} \pi_{\alpha}(d) \cdot I\left(P_{X}, W^{\oplus d}\right)-\frac{1}{\beta}\left(1-\pi_{\alpha}(0)\right)
$$

- Optimal input distribution should compromise all orders $W^{\oplus d}$

A digression - symmetric channels

Motivation: When is the capacity lower bound achieving input distribution P_{X}^{*} is uniform?

- Identify a DMC $V: \mathcal{A} \rightarrow \mathcal{B}$ with its probability transition matrix $(|\mathcal{A}|$ rows, $|\mathcal{B}|$ columns)

A digression - symmetric channels

Motivation: When is the capacity lower bound achieving input distribution P_{X}^{*} is uniform?

- Identify a DMC $V: \mathcal{A} \rightarrow \mathcal{B}$ with its probability transition matrix ($|\mathcal{A}|$ rows, $|\mathcal{B}|$ columns)
- Notation: $V_{\mid \mathcal{B}_{0}}$ is a $|\mathcal{A}|$ rows, $\left|\mathcal{B}_{0}\right|$ columns submatrix

A digression - symmetric channels

Motivation: When is the capacity lower bound achieving input distribution P_{X}^{*} is uniform?

- Identify a DMC $V: \mathcal{A} \rightarrow \mathcal{B}$ with its probability transition matrix ($|\mathcal{A}|$ rows, $|\mathcal{B}|$ columns)
- Notation: $V_{\mid \mathcal{B}_{0}}$ is a $|\mathcal{A}|$ rows, $\left|\mathcal{B}_{0}\right|$ columns submatrix
- Symmetric channels

A digression - symmetric channels

Motivation: When is the capacity lower bound achieving input distribution P_{X}^{*} is uniform?

- Identify a DMC $V: \mathcal{A} \rightarrow \mathcal{B}$ with its probability transition matrix $(|\mathcal{A}|$ rows, $|\mathcal{B}|$ columns)
- Notation: $V_{\mid \mathcal{B}_{0}}$ is a $|\mathcal{A}|$ rows, $\left|\mathcal{B}_{0}\right|$ columns submatrix
- Symmetric channels
- A DMC V is symmetric if its rows are permutations of each other and so are the columns [Cover and Thomas]

A digression - symmetric channels

Motivation: When is the capacity lower bound achieving input distribution P_{X}^{*} is uniform?

- Identify a DMC $V: \mathcal{A} \rightarrow \mathcal{B}$ with its probability transition matrix $(|\mathcal{A}|$ rows, $|\mathcal{B}|$ columns)
- Notation: $V_{\mid \mathcal{B}_{0}}$ is a $|\mathcal{A}|$ rows, $\left|\mathcal{B}_{0}\right|$ columns submatrix
- Symmetric channels
- A DMC V is symmetric if its rows are permutations of each other and so are the columns [Cover and Thomas]
- For example: A modulo-additive channel $B=A \oplus C$

A digression - symmetric channels

Motivation: When is the capacity lower bound achieving input distribution P_{X}^{*} is uniform?

- Identify a DMC $V: \mathcal{A} \rightarrow \mathcal{B}$ with its probability transition matrix ($|\mathcal{A}|$ rows, $|\mathcal{B}|$ columns)
- Notation: $V_{\mid \mathcal{B}_{0}}$ is a $|\mathcal{A}|$ rows, $\left|\mathcal{B}_{0}\right|$ columns submatrix
- Symmetric channels
- A DMC V is symmetric if its rows are permutations of each other and so are the columns [Cover and Thomas]
- For example: A modulo-additive channel $B=A \oplus C$
- A DMC V is weakly symmetric if its rows are permutations and the columns have equal sums [Cover and Thomas]

A digression - symmetric channels

Motivation: When is the capacity lower bound achieving input distribution P_{X}^{*} is uniform?

- Identify a DMC $V: \mathcal{A} \rightarrow \mathcal{B}$ with its probability transition matrix $(|\mathcal{A}|$ rows, $|\mathcal{B}|$ columns $)$
- Notation: $V_{\mid \mathcal{B}_{0}}$ is a $|\mathcal{A}|$ rows, $\left|\mathcal{B}_{0}\right|$ columns submatrix
- Symmetric channels
- A DMC V is symmetric if its rows are permutations of each other and so are the columns [Cover and Thomas]
- For example: A modulo-additive channel $B=A \oplus C$
- A DMC V is weakly symmetric if its rows are permutations and the columns have equal sums [Cover and Thomas]
- A DMC V is symmetric in Gallager's sense if there exists a partition $\mathcal{B}=\bigcup_{i} \mathcal{B}_{i}$ such that $V_{\mid \mathcal{B}_{i}}$ is a symmetric DMC for all i

A digression - symmetric channels

Motivation: When is the capacity lower bound achieving input distribution P_{X}^{*} is uniform?

- Identify a DMC $V: \mathcal{A} \rightarrow \mathcal{B}$ with its probability transition matrix $(|\mathcal{A}|$ rows, $|\mathcal{B}|$ columns $)$
- Notation: $V_{\mid \mathcal{B}_{0}}$ is a $|\mathcal{A}|$ rows, $\left|\mathcal{B}_{0}\right|$ columns submatrix
- Symmetric channels
- A DMC V is symmetric if its rows are permutations of each other and so are the columns [Cover and Thomas]
- For example: A modulo-additive channel $B=A \oplus C$
- A DMC V is weakly symmetric if its rows are permutations and the columns have equal sums [Cover and Thomas]
- A DMC V is symmetric in Gallager's sense if there exists a partition $\mathcal{B}=\bigcup_{i} \mathcal{B}_{i}$ such that $V_{\mid \mathcal{B}_{i}}$ is a symmetric DMC for all i
- In all these cases P_{X}^{*} for V is uniform

A digression - binomial extension symmetric channels

- Back to the DNA channel: We need to maximize $\sum_{d \in \mathbb{N}^{+}} \pi_{\alpha}(d) \cdot I\left(P_{X}, W^{\oplus d}\right)$

A digression - binomial extension symmetric channels

- Back to the DNA channel: We need to maximize $\sum_{d \in \mathbb{N}^{+}} \pi_{\alpha}(d) \cdot I\left(P_{X}, W^{\oplus d}\right)$
- Problem: If W is symmetric then $W^{\oplus d}$ is not necessarily symmetric (not even in Gallager's sense)

A digression - binomial extension symmetric channels

- Back to the DNA channel: We need to maximize $\sum_{d \in \mathbb{N}^{+}} \pi_{\alpha}(d) \cdot I\left(P_{X}, W^{\oplus d}\right)$
- Problem: If W is symmetric then $W^{\oplus d}$ is not necessarily symmetric (not even in Gallager's sense)
- Example:

$$
W_{1}=\frac{1}{15} \cdot\left[\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
4 & 3 & 2 & 5 & 1 \\
2 & 5 & 1 & 3 & 4 \\
3 & 4 & 5 & 1 & 2 \\
5 & 1 & 4 & 2 & 3
\end{array}\right]
$$

but $W_{1}^{\oplus 2}$ is not symmetric

A digression - binomial extension symmetric channels

- Back to the DNA channel: We need to maximize $\sum_{d \in \mathbb{N}^{+}} \pi_{\alpha}(d) \cdot I\left(P_{X}, W^{\oplus d}\right)$
- Problem: If W is symmetric then $W^{\oplus d}$ is not necessarily symmetric (not even in Gallager's sense)
- Example:

$$
W_{1}=\frac{1}{15} \cdot\left[\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
4 & 3 & 2 & 5 & 1 \\
2 & 5 & 1 & 3 & 4 \\
3 & 4 & 5 & 1 & 2 \\
5 & 1 & 4 & 2 & 3
\end{array}\right]
$$

but $W_{1}^{\oplus 2}$ is not symmetric

- The capacity achieving input distribution is not uniform

A digression - binomial extension symmetric channels

- Back to the DNA channel: We need to maximize $\sum_{d \in \mathbb{N}^{+}} \pi_{\alpha}(d) \cdot I\left(P_{X}, W^{\oplus d}\right)$
- Problem: If W is symmetric then $W^{\oplus d}$ is not necessarily symmetric (not even in Gallager's sense)
- Example:

$$
W_{1}=\frac{1}{15} \cdot\left[\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
4 & 3 & 2 & 5 & 1 \\
2 & 5 & 1 & 3 & 4 \\
3 & 4 & 5 & 1 & 2 \\
5 & 1 & 4 & 2 & 3
\end{array}\right]
$$

but $W_{1}^{\oplus 2}$ is not symmetric

- The capacity achieving input distribution is not uniform

Proposition
Let $V: \mathcal{A} \rightarrow \mathcal{B}$ be a modulo-additive DMC. Then $V^{\oplus d}$ is symmetric in Gallager's sense for all $d \in \mathbb{N}^{+}$.

Capacity lower bound (achievable) - input distribution

- Also: The counterexample had $|\mathcal{A}|=|\mathcal{B}|=5$, but $|\mathcal{X}|=4$ for practical DNA channels

Capacity lower bound (achievable) - input distribution

- Also: The counterexample had $|\mathcal{A}|=|\mathcal{B}|=5$, but $|\mathcal{X}|=4$ for practical DNA channels

Proposition
If $|\mathcal{X}| \leq 4,|\mathcal{Y}| \leq|\mathcal{X}|$, and W is a symmetric channel in Gallager's sense, then the lower bound on the capacity is achieved by the uniform input distribution.

Capacity lower bound (achievable) - input distribution

- Also: The counterexample had $|\mathcal{A}|=|\mathcal{B}|=5$, but $|\mathcal{X}|=4$ for practical DNA channels

Proposition
If $|\mathcal{X}| \leq 4,|\mathcal{Y}| \leq|\mathcal{X}|$, and W is a symmetric channel in Gallager's sense, then the lower bound on the capacity is achieved by the uniform input distribution.

- Proof:

Capacity lower bound (achievable) - input distribution

- Also: The counterexample had $|\mathcal{A}|=|\mathcal{B}|=5$, but $|\mathcal{X}|=4$ for practical DNA channels

Proposition
If $|\mathcal{X}| \leq 4,|\mathcal{Y}| \leq|\mathcal{X}|$, and W is a symmetric channel in Gallager's sense, then the lower bound on the capacity is achieved by the uniform input distribution.

- Proof:
- A detailed inspection of all possible channels of $|\mathcal{X}| \leq 4$, $|\mathcal{Y}| \leq|\mathcal{X}|$

Capacity lower bound (achievable) - input distribution

- Also: The counterexample had $|\mathcal{A}|=|\mathcal{B}|=5$, but $|\mathcal{X}|=4$ for practical DNA channels

Proposition
If $|\mathcal{X}| \leq 4,|\mathcal{Y}| \leq|\mathcal{X}|$, and W is a symmetric channel in Gallager's sense, then the lower bound on the capacity is achieved by the uniform input distribution.

- Proof:
- A detailed inspection of all possible channels of $|\mathcal{X}| \leq 4$, $|\mathcal{Y}| \leq|\mathcal{X}|$
- A taxonomy of small doubly-permutation atoms

Capacity lower bound (achievable) - input distribution

- Also: The counterexample had $|\mathcal{A}|=|\mathcal{B}|=5$, but $|\mathcal{X}|=4$ for practical DNA channels

Proposition
If $|\mathcal{X}| \leq 4,|\mathcal{Y}| \leq|\mathcal{X}|$, and W is a symmetric channel in Gallager's sense, then the lower bound on the capacity is achieved by the uniform input distribution.

- Proof:
- A detailed inspection of all possible channels of $|\mathcal{X}| \leq 4$, $|\mathcal{Y}| \leq|\mathcal{X}|$
- A taxonomy of small doubly-permutation atoms
- Open questions:

Capacity lower bound (achievable) - input distribution

- Also: The counterexample had $|\mathcal{A}|=|\mathcal{B}|=5$, but $|\mathcal{X}|=4$ for practical DNA channels

Proposition
If $|\mathcal{X}| \leq 4,|\mathcal{Y}| \leq|\mathcal{X}|$, and W is a symmetric channel in Gallager's sense, then the lower bound on the capacity is achieved by the uniform input distribution.

- Proof:
- A detailed inspection of all possible channels of $|\mathcal{X}| \leq 4$, $|\mathcal{Y}| \leq|\mathcal{X}|$
- A taxonomy of small doubly-permutation atoms
- Open questions:
- When does operations such as binomial extension preserve symmetry?

Capacity lower bound (achievable) - input distribution

- Also: The counterexample had $|\mathcal{A}|=|\mathcal{B}|=5$, but $|\mathcal{X}|=4$ for practical DNA channels

Proposition
If $|\mathcal{X}| \leq 4,|\mathcal{Y}| \leq|\mathcal{X}|$, and W is a symmetric channel in Gallager's sense, then the lower bound on the capacity is achieved by the uniform input distribution.

- Proof:
- A detailed inspection of all possible channels of $|\mathcal{X}| \leq 4$, $|\mathcal{Y}| \leq|\mathcal{X}|$
- A taxonomy of small doubly-permutation atoms
- Open questions:
- When does operations such as binomial extension preserve symmetry?
- How can this systematically be proven?

Error probability bound - basic definitions

- θ_{d} represents the fraction of molecules sampled $d \in \mathbb{N}_{+}$ times

$$
\left\{\theta_{d} \geq 0, \quad \sum_{d \in \mathbb{N}} \theta_{d}=1\right\}
$$

Error probability bound - basic definitions

- θ_{d} represents the fraction of molecules sampled $d \in \mathbb{N}_{+}$ times

$$
\left\{\theta_{d} \geq 0, \quad \sum_{d \in \mathbb{N}} \theta_{d}=1\right\}
$$

- Denote

$$
R\left(\left\{\theta_{d}\right\}\right):=\sum_{d \in \mathbb{N}} \theta_{d} \cdot I\left(P_{X}, W^{\oplus d}\right)-\frac{1}{\beta}\left(1-\theta_{0}\right)
$$

Error probability bound - basic definitions

- θ_{d} represents the fraction of molecules sampled $d \in \mathbb{N}_{+}$ times

$$
\left\{\theta_{d} \geq 0, \quad \sum_{d \in \mathbb{N}} \theta_{d}=1\right\}
$$

- Denote

$$
R\left(\left\{\theta_{d}\right\}\right):=\sum_{d \in \mathbb{N}} \theta_{d} \cdot I\left(P_{X}, W^{\oplus d}\right)-\frac{1}{\beta}\left(1-\theta_{0}\right)
$$

- Can be interpreted as "instantaneous capacity"

Error probability bound - basic definitions

- θ_{d} represents the fraction of molecules sampled $d \in \mathbb{N}_{+}$ times

$$
\left\{\theta_{d} \geq 0, \quad \sum_{d \in \mathbb{N}} \theta_{d}=1\right\}
$$

- Denote

$$
R\left(\left\{\theta_{d}\right\}\right):=\sum_{d \in \mathbb{N}} \theta_{d} \cdot I\left(P_{X}, W^{\oplus d}\right)-\frac{1}{\beta}\left(1-\theta_{0}\right)
$$

- Can be interpreted as "instantaneous capacity"
- Note: This is a notation only

Error probability bound - basic definitions

- θ_{d} represents the fraction of molecules sampled $d \in \mathbb{N}_{+}$ times

$$
\left\{\theta_{d} \geq 0, \quad \sum_{d \in \mathbb{N}} \theta_{d}=1\right\}
$$

- Denote

$$
R\left(\left\{\theta_{d}\right\}\right):=\sum_{d \in \mathbb{N}} \theta_{d} \cdot I\left(P_{X}, W^{\oplus d}\right)-\frac{1}{\beta}\left(1-\theta_{0}\right)
$$

- Can be interpreted as "instantaneous capacity"
- Note: This is a notation only
- $d_{\mathrm{KL}}(p \| q)$ is the binary KL divergence

Reliability function bound

Theorem
It holds that
$\liminf _{M \rightarrow \infty}-\frac{1}{M} \log \overline{\mathrm{pe}}(\mathcal{C}, \mathcal{D}) \geq$
$\max _{P_{X} \in \mathcal{P}(\mathcal{X})} \inf _{\left\{\theta_{d}\right\}_{d \in \mathbb{N}}} \sum_{d \in \mathbb{N}}\left(1-\sum_{i \in[d]} \theta_{i}\right) \cdot d_{K L}\left(\frac{\theta_{d}}{1-\sum_{i \in[d]} \theta_{i}} \| \frac{\pi_{\alpha}(d)}{1-\sum_{i \in[d]} \pi_{\alpha}(i)}\right)$
where the infimum is subject to

$$
R\left(\left\{\theta_{d}\right\}\right) \leq R
$$

Reliability function bound

Theorem
It holds that
$\liminf _{M \rightarrow \infty}-\frac{1}{M} \log \overline{\mathrm{pe}}(\mathcal{C}, \mathcal{D}) \geq$
$\max _{P_{X} \in \mathcal{P}(\mathcal{X})} \inf _{\left\{\theta_{d}\right\}_{d \in \mathbb{N}}} \sum_{d \in \mathbb{N}}\left(1-\sum_{i \in[d]} \theta_{i}\right) \cdot d_{K L}\left(\frac{\theta_{d}}{1-\sum_{i \in[d]} \theta_{i}} \| \frac{\pi_{\alpha}(d)}{1-\sum_{i \in[d]} \pi_{\alpha}(i)}\right)$
where the infimum is subject to

$$
R\left(\left\{\theta_{d}\right\}\right) \leq R
$$

- The exponent vanishes when $\theta_{d}=\pi_{\alpha}(d)$ for all $d \in \mathbb{N}_{+}$

Reliability function bound

Theorem

It holds that
$\liminf _{M \rightarrow \infty}-\frac{1}{M} \log \overline{\mathrm{pe}}(\mathcal{C}, \mathcal{D}) \geq$
$\max _{P_{X} \in \mathcal{P}(\mathcal{X})} \inf _{\left\{\theta_{d}\right\}_{d \in \mathbb{N}}} \sum_{d \in \mathbb{N}}\left(1-\sum_{i \in[d]} \theta_{i}\right) \cdot d_{K L}\left(\frac{\theta_{d}}{1-\sum_{i \in[d]} \theta_{i}} \| \frac{\pi_{\alpha}(d)}{1-\sum_{i \in[d]} \pi_{\alpha}(i)}\right)$
where the infimum is subject to

$$
R\left(\left\{\theta_{d}\right\}\right) \leq R
$$

- The exponent vanishes when $\theta_{d}=\pi_{\alpha}(d)$ for all $d \in \mathbb{N}_{+}$
- \Rightarrow Capacity lower bound follows as a corollary

$$
C(\mathrm{DNA}) \geq R\left(\left\{\pi_{\alpha}(d)\right\}\right)
$$

Interpretation

- The exponent is dominated by outage $R\left(\left\{\theta_{d}\right\}\right) \leq R$

Interpretation

- The exponent is dominated by outage $R\left(\left\{\theta_{d}\right\}\right) \leq R$
- Outage is caused by under-sampled molecules

Interpretation

- The exponent is dominated by outage $R\left(\left\{\theta_{d}\right\}\right) \leq R$
- Outage is caused by under-sampled molecules
- Error probability decays as $e^{-\Theta(M)}$ and not $e^{-\Theta(M L)}=e^{-\Theta(M \log M)}$!

Interpretation

- The exponent is dominated by outage $R\left(\left\{\theta_{d}\right\}\right) \leq R$
- Outage is caused by under-sampled molecules
- Error probability decays as $e^{-\Theta(M)}$ and not $e^{-\Theta(M L)}=e^{-\Theta(M \log M)}!$
- Proof:

Interpretation

- The exponent is dominated by outage $R\left(\left\{\theta_{d}\right\}\right) \leq R$
- Outage is caused by under-sampled molecules
- Error probability decays as $e^{-\Theta(M)}$ and not $e^{-\Theta(M L)}=e^{-\Theta(M \log M)}$!
- Proof:
(1) Standard IID random coding ensemble

Interpretation

- The exponent is dominated by outage $R\left(\left\{\theta_{d}\right\}\right) \leq R$
- Outage is caused by under-sampled molecules
- Error probability decays as $e^{-\Theta(M)}$ and not $e^{-\Theta(M L)}=e^{-\Theta(M \log M)}$!
- Proof:
(1) Standard IID random coding ensemble
(2) High complexity, "optimal-like", decoder

Comparison to previous schemes

- Very different!

Comparison to previous schemes

- Very different!
- Encoder:

Comparison to previous schemes

- Very different!
- Encoder:
- No explicit indexing of molecules

Comparison to previous schemes

- Very different!
- Encoder:
- No explicit indexing of molecules
- No inner/outer code

Comparison to previous schemes

- Very different!
- Encoder:
- No explicit indexing of molecules
- No inner/outer code
- Decoder:

Comparison to previous schemes

- Very different!
- Encoder:
- No explicit indexing of molecules
- No inner/outer code
- Decoder:
- No greedy clustering as in [Lenz et al 2019]

Comparison to previous schemes

- Very different!
- Encoder:
- No explicit indexing of molecules
- No inner/outer code
- Decoder:
- No greedy clustering as in [Lenz et al 2019]
- Clustering requires defining a metric - suitable to BSC/symmetric channels

Comparison to previous schemes

- Very different!
- Encoder:
- No explicit indexing of molecules
- No inner/outer code
- Decoder:
- No greedy clustering as in [Lenz et al 2019]
- Clustering requires defining a metric - suitable to BSC/symmetric channels
- Hard clustering is the source of limited regime of (α, β, W)

Comparison to previous schemes

- Very different!
- Encoder:
- No explicit indexing of molecules
- No inner/outer code
- Decoder:
- No greedy clustering as in [Lenz et al 2019]
- Clustering requires defining a metric - suitable to BSC/symmetric channels
- Hard clustering is the source of limited regime of (α, β, W)
- Bonus: The decoder is universal w.r.t. W

Proof snippets - sampling types

Figure: Sampling types

Proof snippets - sampling types

- A new notion of sampling types:

Proof snippets - sampling types

- A new notion of sampling types:
- U^{N} is the molecule index vector - U_{n} is the molecule sampled at the nth draw

Proof snippets - sampling types

- A new notion of sampling types:
- U^{N} is the molecule index vector $-U_{n}$ is the molecule sampled at the nth draw
- S^{M} is the molecule duplicate vector $-S_{m}$ is the number of times the m th molecule was sampled

Proof snippets - sampling types

- A new notion of sampling types:
- U^{N} is the molecule index vector $-U_{n}$ is the molecule sampled at the nth draw
- S^{M} is the molecule duplicate vector $-S_{m}$ is the number of times the m th molecule was sampled
- Q^{N+1} is the amplification vector $-Q_{d}$ is the number of molecules sampled d times

Proof snippets - sampling types

- A new notion of sampling types:
- U^{N} is the molecule index vector $-U_{n}$ is the molecule sampled at the nth draw
- S^{M} is the molecule duplicate vector $-S_{m}$ is the number of times the m th molecule was sampled
- Q^{N+1} is the amplification vector $-Q_{d}$ is the number of molecules sampled d times
- Related via the empirical count operator \mathscr{N}

$$
Q^{N+1}=\mathscr{N}\left(S^{M}\right)=\mathscr{N}^{(2)}\left(U^{N}\right)
$$

Proof snippets - sampling types

- A new notion of sampling types:
- U^{N} is the molecule index vector $-U_{n}$ is the molecule sampled at the nth draw
- S^{M} is the molecule duplicate vector $-S_{m}$ is the number of times the m th molecule was sampled
- Q^{N+1} is the amplification vector $-Q_{d}$ is the number of molecules sampled d times
- Related via the empirical count operator \mathscr{N}

$$
Q^{N+1}=\mathscr{N}\left(S^{M}\right)=\mathscr{N}^{(2)}\left(U^{N}\right)
$$

- The analysis requires estimating asymptotic sizes of sampling type classes, e.g.

$$
\mathscr{T}_{q^{N+1}}^{(2)}=\left\{u^{N} \in[M]^{N}: \mathscr{N}^{(2)}\left(u^{N}\right)=q^{N+1}\right\}
$$

Proof snippets - sampling types

- A new notion of sampling types:
- U^{N} is the molecule index vector $-U_{n}$ is the molecule sampled at the nth draw
- S^{M} is the molecule duplicate vector $-S_{m}$ is the number of times the m th molecule was sampled
- Q^{N+1} is the amplification vector $-Q_{d}$ is the number of molecules sampled d times
- Related via the empirical count operator \mathscr{N}

$$
Q^{N+1}=\mathscr{N}\left(S^{M}\right)=\mathscr{N}^{(2)}\left(U^{N}\right)
$$

- The analysis requires estimating asymptotic sizes of sampling type classes, e.g.

$$
\mathscr{T}_{q^{N+1}}^{(2)}=\left\{u^{N} \in[M]^{N}: \mathscr{N}^{(2)}\left(u^{N}\right)=q^{N+1}\right\}
$$

- Estimation via restricted partition numbers [Hardy and Ramanujan, Uspensky, and Rademacher]

Proof snippets - channel model

- For all U^{N} with a given q^{N+1} amplification vector, the channel operation is "equivalent"

Proof snippets - channel model

- For all U^{N} with a given q^{N+1} amplification vector, the channel operation is "equivalent"
- A mixture (over orders d) of binomial channels $W^{\oplus d}$, with mixing coefficients $\frac{q_{d}}{M}$

$$
\begin{aligned}
\mathcal{L}\left[y^{L N} \mid\right. & \left.x^{L M}\right]=\sum_{q^{N+1} \in \mathscr{Q}(M, N)} \mathbb{P}\left[U^{N} \in \mathscr{T}_{q^{N+1}}^{(2)}\right] \\
& \times \sum_{u^{N} \in \mathscr{T}_{q^{N+1}}^{(2)}} \frac{1}{\left|\mathscr{T}_{q^{N+1}}^{(2)}\right|} \prod_{d=0}^{N} W^{\oplus d}\left[b_{\mathcal{K}_{d}\left(u^{N}\right)}^{d} \mid a_{\mathcal{K}_{d}\left(u^{N}\right)}\right]
\end{aligned}
$$

Proof snippets - decoder

- The decoder is based on a metric (score)

$$
\hat{x}^{M L}:=\underset{x^{L M} \in \mathcal{C}}{\arg \max } \lambda\left(Y^{L N} \mid x^{L M}\right)
$$

Proof snippets - decoder

- The decoder is based on a metric (score)

$$
\hat{x}^{M L}:=\underset{x^{L M} \in \mathcal{C}}{\arg \max } \lambda\left(Y^{L N} \mid x^{L M}\right)
$$

- Recall: Molecule U_{n} was sampled at time $n \in[N]$. A sampling vector is $U^{N} \in[M]^{N}$

Proof snippets - decoder

- The decoder is based on a metric (score)

$$
\hat{x}^{M L}:=\underset{x^{L M} \in \mathcal{C}}{\arg \max } \lambda\left(Y^{L N} \mid x^{L M}\right)
$$

- Recall: Molecule U_{n} was sampled at time $n \in[N]$. A sampling vector is $U^{N} \in[M]^{N}$
- The metric is a maximization over all sampling events

$$
\lambda\left(y^{L N} \mid x^{L M}\right)=\max _{u^{N}} \lambda\left(Y^{N L}, x^{M L} ; u^{N}\right)
$$

Proof snippets - decoder

- The conditional score:

$$
\begin{aligned}
& \lambda\left(y^{L N} \mid x^{L M} ; u^{N}\right):=-\left(1-\theta_{0}\right) M \log M \\
+ & \sum_{d \in[N+1]} \theta_{d} L \cdot\left[D\left(\hat{P}^{d}\left(x^{L M} ; u^{N}\right) \| P_{X}\right)+I_{\hat{P}^{d}\left(x^{L M}, y^{L N} ; u^{N}\right)}\left(A ; B^{d}\right)\right]
\end{aligned}
$$

Proof snippets - decoder

- The conditional score:

$$
\begin{aligned}
& \lambda\left(y^{L N} \mid x^{L M} ; u^{N}\right):=-\left(1-\theta_{0}\right) M \log M \\
+ & \sum_{d \in[N+1]} \theta_{d} L \cdot\left[D\left(\hat{P}^{d}\left(x^{L M} ; u^{N}\right) \| P_{X}\right)+I_{\hat{P}^{d}\left(x^{L M}, y^{L N} ; u^{N}\right)}\left(A ; B^{d}\right)\right]
\end{aligned}
$$

(1) Based on the empirical mutual information (MMI)

Proof snippets - decoder

- The conditional score:

$$
\begin{aligned}
& \lambda\left(y^{L N} \mid x^{L M} ; u^{N}\right):=-\left(1-\theta_{0}\right) M \log M \\
+ & \sum_{d \in[N+1]} \theta_{d} L \cdot\left[D\left(\hat{P}^{d}\left(x^{L M} ; u^{N}\right) \| P_{X}\right)+I_{\hat{P}^{d}\left(x^{L M}, y^{L N} ; u^{N}\right)}\left(A ; B^{d}\right)\right]
\end{aligned}
$$

(1) Based on the empirical mutual information (MMI)

- Does not depend on the channel W (universal)

Proof snippets - decoder

- The conditional score:

$$
\begin{aligned}
& \lambda\left(y^{L N} \mid x^{L M} ; u^{N}\right):=-\left(1-\theta_{0}\right) M \log M \\
+ & \sum_{d \in[N+1]} \theta_{d} L \cdot\left[D\left(\hat{P}^{d}\left(x^{L M} ; u^{N}\right) \| P_{X}\right)+I_{\hat{P}^{d}\left(x^{L M}, y^{L N} ; u^{N}\right)}\left(A ; B^{d}\right)\right]
\end{aligned}
$$

(1) Based on the empirical mutual information (MMI)

- Does not depend on the channel W (universal)
(2) Adapted for the IID ensemble using a KL divergence term

Proof snippets - decoder

- The conditional score:

$$
\begin{aligned}
& \lambda\left(y^{L N} \mid x^{L M} ; u^{N}\right):=-\left(1-\theta_{0}\right) M \log M \\
+ & \sum_{d \in[N+1]} \theta_{d} L \cdot\left[D\left(\hat{P}^{d}\left(x^{L M} ; u^{N}\right) \| P_{X}\right)+I_{\hat{P}^{d}\left(x^{L M}, y^{L N} ; u^{N}\right)}\left(A ; B^{d}\right)\right]
\end{aligned}
$$

(1) Based on the empirical mutual information (MMI)

- Does not depend on the channel W (universal)
(2) Adapted for the IID ensemble using a KL divergence term
- Fixed-composition codewords is problematic:

Proof snippets - decoder

- The conditional score:

$$
\begin{aligned}
& \lambda\left(y^{L N} \mid x^{L M} ; u^{N}\right):=-\left(1-\theta_{0}\right) M \log M \\
+ & \sum_{d \in[N+1]} \theta_{d} L \cdot\left[D\left(\hat{P}^{d}\left(x^{L M} ; u^{N}\right) \| P_{X}\right)+I_{\hat{P}^{d}\left(x^{L M}, y^{L N} ; u^{N}\right)}\left(A ; B^{d}\right)\right]
\end{aligned}
$$

(1) Based on the empirical mutual information (MMI)

- Does not depend on the channel W (universal)
(2) Adapted for the IID ensemble using a KL divergence term
- Fixed-composition codewords is problematic:
- A full codeword may have fixed composition, but not each molecule

Proof snippets - decoder

- The conditional score:

$$
\begin{aligned}
& \lambda\left(y^{L N} \mid x^{L M} ; u^{N}\right):=-\left(1-\theta_{0}\right) M \log M \\
+ & \sum_{d \in[N+1]} \theta_{d} L \cdot\left[D\left(\hat{P}^{d}\left(x^{L M} ; u^{N}\right) \| P_{X}\right)+I_{\hat{P}^{d}\left(x^{L M}, y^{L N} ; u^{N}\right)}\left(A ; B^{d}\right)\right]
\end{aligned}
$$

(1) Based on the empirical mutual information (MMI)

- Does not depend on the channel W (universal)
(2) Adapted for the IID ensemble using a KL divergence term
- Fixed-composition codewords is problematic:
- A full codeword may have fixed composition, but not each molecule
- Fixed-composition molecules is too restrictive

Proof snippets - decoder

- The conditional score:

$$
\begin{aligned}
& \lambda\left(y^{L N} \mid x^{L M} ; u^{N}\right):=-\left(1-\theta_{0}\right) M \log M \\
+ & \sum_{d \in[N+1]} \theta_{d} L \cdot\left[D\left(\hat{P}^{d}\left(x^{L M} ; u^{N}\right) \| P_{X}\right)+I_{\hat{P}^{d}\left(x^{L M}, y^{L N} ; u^{N}\right)}\left(A ; B^{d}\right)\right]
\end{aligned}
$$

(1) Based on the empirical mutual information (MMI)

- Does not depend on the channel W (universal)
(2) Adapted for the IID ensemble using a KL divergence term
- Fixed-composition codewords is problematic:
- A full codeword may have fixed composition, but not each molecule
- Fixed-composition molecules is too restrictive
(3) A correction term: Not all sampling events have the same probability ("sampling types")

Proof snippets - decoder

- The conditional score:

$$
\begin{aligned}
& \lambda\left(y^{L N} \mid x^{L M} ; u^{N}\right):=-\left(1-\theta_{0}\right) M \log M \\
+ & \sum_{d \in[N+1]} \theta_{d} L \cdot\left[D\left(\hat{P}^{d}\left(x^{L M} ; u^{N}\right) \| P_{X}\right)+I_{\hat{P}^{d}\left(x^{L M}, y^{L N} ; u^{N}\right)}\left(A ; B^{d}\right)\right]
\end{aligned}
$$

(1) Based on the empirical mutual information (MMI)

- Does not depend on the channel W (universal)
(2) Adapted for the IID ensemble using a KL divergence term
- Fixed-composition codewords is problematic:
- A full codeword may have fixed composition, but not each molecule
- Fixed-composition molecules is too restrictive
(3) A correction term: Not all sampling events have the same probability ("sampling types")
- Inspired by the analysis of [Csiszár 1980] for joint source-channel coding

Proof snippets - error probability analysis

- Condition on a given amplification vector $Q^{N+1}=q^{N+1}$

Proof snippets - error probability analysis

- Condition on a given amplification vector $Q^{N+1}=q^{N+1}$
- Random coding analysis of the error probability of the universal decoder

Proof snippets - error probability analysis

- Condition on a given amplification vector $Q^{N+1}=q^{N+1}$
- Random coding analysis of the error probability of the universal decoder
- Method of types (on steroids...)

Proof snippets - error probability analysis

- Condition on a given amplification vector $Q^{N+1}=q^{N+1}$
- Random coding analysis of the error probability of the universal decoder
- Method of types (on steroids...)
- An obstacle:

Proof snippets - error probability analysis

- Condition on a given amplification vector $Q^{N+1}=q^{N+1}$
- Random coding analysis of the error probability of the universal decoder
- Method of types (on steroids...)
- An obstacle:
- The order $d \in[N+1]$ is unbounded as N increases

Proof snippets - error probability analysis

- Condition on a given amplification vector $Q^{N+1}=q^{N+1}$
- Random coding analysis of the error probability of the universal decoder
- Method of types (on steroids...)
- An obstacle:
- The order $d \in[N+1]$ is unbounded as N increases
- The maximal output alphabet size of $\left\{V^{\oplus d}\right\}_{d \in[N]}$ increases with blocklength!

Proof snippets - error probability analysis

- Condition on a given amplification vector $Q^{N+1}=q^{N+1}$
- Random coding analysis of the error probability of the universal decoder
- Method of types (on steroids...)
- An obstacle:
- The order $d \in[N+1]$ is unbounded as N increases
- The maximal output alphabet size of $\left\{V^{\oplus d}\right\}_{d \in[N]}$ increases with blocklength!
- Solution: A careful truncation argument

Proof snippets - error probability analysis

- Condition on a given amplification vector $Q^{N+1}=q^{N+1}$
- Random coding analysis of the error probability of the universal decoder
- Method of types (on steroids...)
- An obstacle:
- The order $d \in[N+1]$ is unbounded as N increases
- The maximal output alphabet size of $\left\{V^{\oplus d}\right\}_{d \in[N]}$ increases with blocklength!
- Solution: A careful truncation argument
- Assuming $q_{d}=0$ for all $d \geq \bar{d}$

Proof snippets - error probability analysis

- Condition on a given amplification vector $Q^{N+1}=q^{N+1}$
- Random coding analysis of the error probability of the universal decoder
- Method of types (on steroids...)
- An obstacle:
- The order $d \in[N+1]$ is unbounded as N increases
- The maximal output alphabet size of $\left\{V^{\oplus d}\right\}_{d \in[N]}$ increases with blocklength!
- Solution: A careful truncation argument
- Assuming $q_{d}=0$ for all $d \geq \bar{d}$
- \bar{d} is optimized later on

Proof snippets - error probability analysis

- The conditional analysis shows that if

$$
R \leq \Gamma_{\bar{d}}\left(q^{N+1}\right):=\sum_{d \in[\bar{d}+1]} \frac{q_{d}}{M} \cdot I\left(P_{X}, W^{\oplus d}\right)-\frac{1}{\beta}\left(1-\frac{q_{0}}{M}\right)
$$

then the conditional error probability decays as $e^{-\Theta(M L)}$

Proof snippets - error probability analysis

- The conditional analysis shows that if

$$
R \leq \Gamma_{\bar{d}}\left(q^{N+1}\right):=\sum_{d \in[\bar{d}+1]} \frac{q_{d}}{M} \cdot I\left(P_{X}, W^{\oplus d}\right)-\frac{1}{\beta}\left(1-\frac{q_{0}}{M}\right)
$$

then the conditional error probability decays as $e^{-\Theta(M L)}$

- It holds

$$
\mathbb{P}\left[\Gamma_{\bar{d}}\left(Q^{N+1}\right)<R\right]=e^{-\Theta(M)}
$$

Proof snippets - error probability analysis

- The conditional analysis shows that if

$$
R \leq \Gamma_{\bar{d}}\left(q^{N+1}\right):=\sum_{d \in[\bar{d}+1]} \frac{q_{d}}{M} \cdot I\left(P_{X}, W^{\oplus d}\right)-\frac{1}{\beta}\left(1-\frac{q_{0}}{M}\right)
$$

then the conditional error probability decays as $e^{-\Theta(M L)}$

- It holds

$$
\mathbb{P}\left[\Gamma_{\bar{d}}\left(Q^{N+1}\right)<R\right]=e^{-\Theta(M)}
$$

- Hence
$\overline{\mathrm{pe}}(\mathcal{C}, \mathcal{D}) \leq \mathbb{P}\left[\Gamma_{\bar{d}}\left(Q^{N+1}\right) \geq R\right] \cdot e^{-\Theta(M L)}+\mathbb{P}\left[\Gamma_{\bar{d}}\left(Q^{N+1}\right)<R\right] \cdot 1$.
A "bad" sampling event dominates the error probability!

Proof snippets - error probability analysis

- The conditional analysis shows that if

$$
R \leq \Gamma_{\bar{d}}\left(q^{N+1}\right):=\sum_{d \in[\bar{d}+1]} \frac{q_{d}}{M} \cdot I\left(P_{X}, W^{\oplus d}\right)-\frac{1}{\beta}\left(1-\frac{q_{0}}{M}\right)
$$

then the conditional error probability decays as $e^{-\Theta(M L)}$

- It holds

$$
\mathbb{P}\left[\Gamma_{\bar{d}}\left(Q^{N+1}\right)<R\right]=e^{-\Theta(M)}
$$

- Hence
$\overline{\mathrm{pe}}(\mathcal{C}, \mathcal{D}) \leq \mathbb{P}\left[\Gamma_{\bar{d}}\left(Q^{N+1}\right) \geq R\right] \cdot e^{-\Theta(M L)}+\mathbb{P}\left[\Gamma_{\bar{d}}\left(Q^{N+1}\right)<R\right] \cdot 1$.
A "bad" sampling event dominates the error probability!
- Evaluation of $\mathbb{P}\left[\Gamma_{\bar{d}}\left(Q^{N+1}\right)<R\right]$:

Proof snippets - error probability analysis

- The conditional analysis shows that if

$$
R \leq \Gamma_{\bar{d}}\left(q^{N+1}\right):=\sum_{d \in[\bar{d}+1]} \frac{q_{d}}{M} \cdot I\left(P_{X}, W^{\oplus d}\right)-\frac{1}{\beta}\left(1-\frac{q_{0}}{M}\right)
$$

then the conditional error probability decays as $e^{-\Theta(M L)}$

- It holds

$$
\mathbb{P}\left[\Gamma_{\bar{d}}\left(Q^{N+1}\right)<R\right]=e^{-\Theta(M)}
$$

- Hence
$\overline{\mathrm{pe}}(\mathcal{C}, \mathcal{D}) \leq \mathbb{P}\left[\Gamma_{\bar{d}}\left(Q^{N+1}\right) \geq R\right] \cdot e^{-\Theta(M L)}+\mathbb{P}\left[\Gamma_{\bar{d}}\left(Q^{N+1}\right)<R\right] \cdot 1$.
A "bad" sampling event dominates the error probability!
- Evaluation of $\mathbb{P}\left[\Gamma_{\bar{d}}\left(Q^{N+1}\right)<R\right]$:
- The vector Q^{N+1} is the empirical count of a multinomial S^{M}

Proof snippets - error probability analysis

- The conditional analysis shows that if

$$
R \leq \Gamma_{\bar{d}}\left(q^{N+1}\right):=\sum_{d \in[\bar{d}+1]} \frac{q_{d}}{M} \cdot I\left(P_{X}, W^{\oplus d}\right)-\frac{1}{\beta}\left(1-\frac{q_{0}}{M}\right)
$$

then the conditional error probability decays as $e^{-\Theta(M L)}$

- It holds

$$
\mathbb{P}\left[\Gamma_{\bar{d}}\left(Q^{N+1}\right)<R\right]=e^{-\Theta(M)}
$$

- Hence
$\overline{\mathrm{pe}}(\mathcal{C}, \mathcal{D}) \leq \mathbb{P}\left[\Gamma_{\bar{d}}\left(Q^{N+1}\right) \geq R\right] \cdot e^{-\Theta(M L)}+\mathbb{P}\left[\Gamma_{\bar{d}}\left(Q^{N+1}\right)<R\right] \cdot 1$.
A "bad" sampling event dominates the error probability!
- Evaluation of $\mathbb{P}\left[\Gamma_{\bar{d}}\left(Q^{N+1}\right)<R\right]$:
- The vector Q^{N+1} is the empirical count of a multinomial S^{M}
- The multinomial distribution is Poissonized

Proof snippets - error probability analysis

- The conditional analysis shows that if

$$
R \leq \Gamma_{\bar{d}}\left(q^{N+1}\right):=\sum_{d \in[\bar{d}+1]} \frac{q_{d}}{M} \cdot I\left(P_{X}, W^{\oplus d}\right)-\frac{1}{\beta}\left(1-\frac{q_{0}}{M}\right)
$$

then the conditional error probability decays as $e^{-\Theta(M L)}$

- It holds

$$
\mathbb{P}\left[\Gamma_{\bar{d}}\left(Q^{N+1}\right)<R\right]=e^{-\Theta(M)}
$$

- Hence
$\overline{\mathrm{pe}}(\mathcal{C}, \mathcal{D}) \leq \mathbb{P}\left[\Gamma_{\bar{d}}\left(Q^{N+1}\right) \geq R\right] \cdot e^{-\Theta(M L)}+\mathbb{P}\left[\Gamma_{\bar{d}}\left(Q^{N+1}\right)<R\right] \cdot 1$.
A "bad" sampling event dominates the error probability!
- Evaluation of $\mathbb{P}\left[\Gamma_{\bar{d}}\left(Q^{N+1}\right)<R\right]$:
- The vector Q^{N+1} is the empirical count of a multinomial S^{M}
- The multinomial distribution is Poissonized
- Typically for expectations, here for tails

Error exponent for fixed uniform sampling

- Suppose that each molecule is equally sampled

$$
S_{m}=\alpha=\frac{N}{M} \text { for all } m \in[M]
$$

Error exponent for fixed uniform sampling

- Suppose that each molecule is equally sampled $S_{m}=\alpha=\frac{N}{M}$ for all $m \in[M]$

Theorem
Assume the ideal sampling of $S_{m}=\alpha$ for all $m \in[M]$ with probability 1. Then,

$$
\begin{aligned}
& \liminf _{M \rightarrow \infty}-\frac{1}{M L} \log \overline{\mathrm{pe}}(\mathcal{C}, \mathcal{D}) \\
& \geq \max _{P_{X} \in \mathcal{P}(\mathcal{X}) Q_{X Y^{\alpha}} \in \mathcal{P}\left(\mathcal{X} \times \mathcal{Y}^{\alpha}\right)} D\left(Q_{X} \| P_{X}\right)+D\left(Q_{Y^{\alpha} \mid X} \| W^{\oplus \alpha} \mid Q_{X}\right) \\
& \quad+\left[D\left(Q_{A} \| P_{X}\right)+I_{Q}\left(X ; Y^{\alpha}\right)-\frac{1}{\beta}-R\right]_{+}
\end{aligned}
$$

Error exponent for fixed uniform sampling

- Suppose that each molecule is equally sampled

$$
S_{m}=\alpha=\frac{N}{M} \text { for all } m \in[M]
$$

Theorem

Assume the ideal sampling of $S_{m}=\alpha$ for all $m \in[M]$ with probability 1. Then,

$$
\begin{aligned}
& \liminf _{M \rightarrow \infty}-\frac{1}{M L} \log \overline{\mathrm{pe}}(\mathcal{C}, \mathcal{D}) \\
& \geq \max _{P_{X} \in \mathcal{P}(\mathcal{X})} \min _{Q_{X Y^{\alpha}} \in \mathcal{P}\left(\mathcal{X} \times \mathcal{Y}^{\alpha}\right)} D\left(Q_{X} \| P_{X}\right)+D\left(Q_{Y^{\alpha} \mid X} \| W^{\oplus \alpha} \mid Q_{X}\right) \\
& \\
& \quad+\left[D\left(Q_{A} \| P_{X}\right)+I_{Q}\left(X ; Y^{\alpha}\right)-\frac{1}{\beta}-R\right]_{+}
\end{aligned}
$$

- Despite loss of order, the error probability decays as $e^{-\Theta(M L)}=e^{-\Theta(M \log M)}$!

Outline

(1) Introduction
(2) Achievable bounds
(3) A converse bound
4. Modulo additive channels
(5) A simplified setting

Capacity upper bound (converse) - definitions

- The common-input MI deficit

$$
\mathrm{CID}\left(P_{X}, V\right)=2 \cdot I\left(P_{X}, V\right)-I\left(P_{X}, V^{\oplus 2}\right)
$$

Capacity upper bound (converse) - definitions

- The common-input MI deficit

$$
\mathrm{CID}\left(P_{X}, V\right)=2 \cdot I\left(P_{X}, V\right)-I\left(P_{X}, V^{\oplus 2}\right)
$$

- Intuitively: The difference in mutual information for two independent inputs vs. identical inputs

Capacity upper bound (converse) - definitions

- The common-input MI deficit

$$
\operatorname{CID}\left(P_{X}, V\right)=2 \cdot I\left(P_{X}, V\right)-I\left(P_{X}, V^{\oplus 2}\right)
$$

- Intuitively: The difference in mutual information for two independent inputs vs. identical inputs
- The d-order excess-rate term by

$$
\Omega_{d}\left(\beta, P_{X}, W\right):=\left[\min \left\{\frac{1}{\beta}, \frac{2}{\beta}-\operatorname{CID}\left(P_{X}, W^{\oplus d}\right)\right\}\right]_{+}
$$

Capacity upper bound (converse)

Theorem
Assume that $\min _{x \in \mathcal{X}, y \in \mathcal{Y}} W(y \mid x)>0$. Then, the capacity of the DNA channel is upper bounded as

$$
\begin{aligned}
C(\mathrm{DNA}) \leq \max _{P_{X} \in \mathcal{P}(\mathcal{X})} \sum_{d \in \mathbb{N}^{+}} \pi_{\alpha}(d) \cdot\left[I\left(P_{X}, W^{\oplus d}\right)\right. & \left.+\Omega_{d}\left(\beta, P_{X}, W\right)\right] \\
& -\frac{1}{\beta}\left(1-\pi_{\alpha}(0)\right)
\end{aligned}
$$

Capacity upper bound (converse)

Theorem
Assume that $\min _{x \in \mathcal{X}, y \in \mathcal{Y}} W(y \mid x)>0$. Then, the capacity of the DNA channel is upper bounded as

$$
\begin{aligned}
C(\mathrm{DNA}) \leq \max _{P_{X} \in \mathcal{P}(\mathcal{X})} \sum_{d \in \mathbb{N}^{+}} \pi_{\alpha}(d) \cdot\left[I\left(P_{X}, W^{\oplus d}\right)\right. & \left.+\Omega_{d}\left(\beta, P_{X}, W\right)\right] \\
& -\frac{1}{\beta}\left(1-\pi_{\alpha}(0)\right)
\end{aligned}
$$

- Similar to the lower bound, except for $\Omega_{d}(\cdot)$

Tightness of the bound

Corollary
Let
$P_{X}^{*}(\alpha, \beta, W) \in \underset{P_{X} \in \mathcal{P}(\mathcal{X})}{\arg \max } \sum_{d \in \mathbb{N}^{+}} \pi_{\alpha}(d) \cdot\left[I\left(P_{X}, W^{\oplus d}\right)+\Omega_{d}\left(\beta, P_{X}, W\right)\right]$,
and let

$$
\beta_{c r}(\alpha, W):=\min \left\{\beta: \beta \geq \frac{2}{\operatorname{CID}\left(P_{X}^{*}(\alpha, \beta, W), W\right)}\right\}
$$

Then, for all $\beta \geq \beta_{c r}(\alpha, W)$
$\left.C(\mathrm{DNA})=\sum_{d \in \mathbb{N}^{+}} \pi_{\alpha}(d) \cdot I\left(P_{X}^{*}\left(\alpha, \beta_{c r}(\alpha, W), W\right), W^{\oplus d}\right)\right)-\frac{1}{\beta}\left(1-\pi_{\alpha}(0)\right)$.

Proof idea

- Warning: The fulle proof is very complicated and long

Proof idea

- Warning: The fulle proof is very complicated and long
- Builds on the ideas of [Shomrony and Heckel 2021], [Lenz et al 2020]

Proof idea

- Warning: The fulle proof is very complicated and long
- Builds on the ideas of [Shomrony and Heckel 2021], [Lenz et al 2020]
- Goal: By Fano's inequality, bounding $I\left(X^{L M} ; Y^{L N}\right)$ for any input distribution

Proof idea

- Warning: The fulle proof is very complicated and long
- Builds on the ideas of [Shomrony and Heckel 2021], [Lenz et al 2020]
- Goal: By Fano's inequality, bounding $I\left(X^{L M} ; Y^{L N}\right)$ for any input distribution
- An easy converse

$$
I\left(X^{L M} ; Y^{L N}\right) \leq \max _{P_{X} \in \mathcal{P}(\mathcal{X})} \sum_{d \in \mathbb{N}^{+}} \pi_{\alpha}(d) \cdot I\left(P_{X}, W^{\oplus d}\right)
$$

Proof idea

- Warning: The fulle proof is very complicated and long
- Builds on the ideas of [Shomrony and Heckel 2021], [Lenz et al 2020]
- Goal: By Fano's inequality, bounding $I\left(X^{L M} ; Y^{L N}\right)$ for any input distribution
- An easy converse

$$
I\left(X^{L M} ; Y^{L N}\right) \leq \max _{P_{X} \in \mathcal{P}(\mathcal{X})} \sum_{d \in \mathbb{N}^{+}} \pi_{\alpha}(d) \cdot I\left(P_{X}, W^{\oplus d}\right)
$$

- Problem: Missing the $-\frac{1}{\beta}\left(1-\pi_{\alpha}(0)\right)$ term

Proof idea

- Warning: The fulle proof is very complicated and long
- Builds on the ideas of [Shomrony and Heckel 2021], [Lenz et al 2020]
- Goal: By Fano's inequality, bounding $I\left(X^{L M} ; Y^{L N}\right)$ for any input distribution
- An easy converse

$$
I\left(X^{L M} ; Y^{L N}\right) \leq \max _{P_{X} \in \mathcal{P}(\mathcal{X})} \sum_{d \in \mathbb{N}^{+}} \pi_{\alpha}(d) \cdot I\left(P_{X}, W^{\oplus d}\right)
$$

- Problem: Missing the $-\frac{1}{\beta}\left(1-\pi_{\alpha}(0)\right)$ term
- Does a decoder of an optimal system must know which molecules have been sampled after correct decoding?

Proof idea

- Warning: The fulle proof is very complicated and long
- Builds on the ideas of [Shomrony and Heckel 2021], [Lenz et al 2020]
- Goal: By Fano's inequality, bounding $I\left(X^{L M} ; Y^{L N}\right)$ for any input distribution
- An easy converse

$$
I\left(X^{L M} ; Y^{L N}\right) \leq \max _{P_{X} \in \mathcal{P}(\mathcal{X})} \sum_{d \in \mathbb{N}^{+}} \pi_{\alpha}(d) \cdot I\left(P_{X}, W^{\oplus d}\right)
$$

- Problem: Missing the $-\frac{1}{\beta}\left(1-\pi_{\alpha}(0)\right)$ term
- Does a decoder of an optimal system must know which molecules have been sampled after correct decoding?
- Does a molecule must contain implicit information on its index?

Proof - main challenge

- Challenge: Characterizing optimal distribution on molecules. Why?

Proof - main challenge

- Challenge: Characterizing optimal distribution on molecules. Why?
- Illustration: $M=2$

Proof - main challenge

- Challenge: Characterizing optimal distribution on molecules. Why?
- Illustration: $M=2$
- Option 1: Identical molecules $X_{1}^{L}=X_{2}^{L} \stackrel{\text { IID }}{\sim} P_{X}$

Proof - main challenge

- Challenge: Characterizing optimal distribution on molecules. Why?
- Illustration: $M=2$
- Option 1: Identical molecules $X_{1}^{L}=X_{2}^{L} \stackrel{\text { IID }}{\sim} P_{X}$
- Low MI $I\left(P_{X}, W^{\oplus 2}\right)$

Proof - main challenge

- Challenge: Characterizing optimal distribution on molecules. Why?
- Illustration: $M=2$
- Option 1: Identical molecules $X_{1}^{L}=X_{2}^{L} \stackrel{\text { IID }}{\sim} P_{X}$
- Low MI $I\left(P_{X}, W^{\oplus 2}\right)$
- Loss of order is immaterial

Proof - main challenge

- Challenge: Characterizing optimal distribution on molecules. Why?
- Illustration: $M=2$
- Option 1: Identical molecules $X_{1}^{L}=X_{2}^{L} \stackrel{\text { IID }}{\sim} P_{X}$
- Low MI $I\left(P_{X}, W^{\oplus 2}\right)$
- Loss of order is immaterial
- Option 2: Independent molecules $X_{1}^{L} \stackrel{\text { IID }}{\sim} P_{X} \Perp X_{2}^{L} \stackrel{\text { IID }}{\sim} P_{X}$

Proof - main challenge

- Challenge: Characterizing optimal distribution on molecules. Why?
- Illustration: $M=2$
- Option 1: Identical molecules $X_{1}^{L}=X_{2}^{L} \stackrel{\text { IID }}{\sim} P_{X}$
- Low MI $I\left(P_{X}, W^{\oplus 2}\right)$
- Loss of order is immaterial
- Option 2: Independent molecules $X_{1}^{L} \stackrel{\text { IID }}{\sim} P_{X} \Perp X_{2}^{L} \stackrel{\text { IID }}{\sim} P_{X}$
- High MI $2 I\left(P_{X}, W\right)$

Proof - main challenge

- Challenge: Characterizing optimal distribution on molecules. Why?
- Illustration: $M=2$
- Option 1: Identical molecules $X_{1}^{L}=X_{2}^{L} \stackrel{\text { IID }}{\sim} P_{X}$
- Low MI $I\left(P_{X}, W^{\oplus 2}\right)$
- Loss of order is immaterial
- Option 2: Independent molecules $X_{1}^{L} \stackrel{\text { IID }}{\sim} P_{X} \Perp X_{2}^{L} \stackrel{\text { IID }}{\sim} P_{X}$
- High MI $2 I\left(P_{X}, W\right)$
- Loss of order causes loss of $-\frac{1}{\beta}\left(1-\pi_{\alpha}(0)\right)$

Proof - main challenge

- Challenge: Characterizing optimal distribution on molecules. Why?
- Illustration: $M=2$
- Option 1: Identical molecules $X_{1}^{L}=X_{2}^{L} \stackrel{\text { IID }}{\sim} P_{X}$
- Low MI $I\left(P_{X}, W^{\oplus 2}\right)$
- Loss of order is immaterial
- Option 2: Independent molecules $X_{1}^{L} \stackrel{\text { IID }}{\sim} P_{X} \Perp X_{2}^{L} \stackrel{\text { IID }}{\sim} P_{X}$
- High MI $2 I\left(P_{X}, W\right)$
- Loss of order causes loss of $-\frac{1}{\beta}\left(1-\pi_{\alpha}(0)\right)$
- Optimal choice depends on β and W

Proof - main challenge

- Challenge: Characterizing optimal distribution on molecules. Why?
- Illustration: $M=2$
- Option 1: Identical molecules $X_{1}^{L}=X_{2}^{L} \stackrel{\text { IID }}{\sim} P_{X}$
- Low MI $I\left(P_{X}, W^{\oplus 2}\right)$
- Loss of order is immaterial
- Option 2: Independent molecules $X_{1}^{L} \stackrel{\text { IID }}{\sim} P_{X} \Perp X_{2}^{L} \stackrel{\text { IID }}{\sim} P_{X}$
- High MI $2 I\left(P_{X}, W\right)$
- Loss of order causes loss of $-\frac{1}{\beta}\left(1-\pi_{\alpha}(0)\right)$
- Optimal choice depends on β and W
- In the regime where capacity is known, independent molecules are optimal

Proof outline - "far" and "close" molecules

- Challenge: What are "similar" and "independent" molecules?

Proof outline - "far" and "close" molecules

- Challenge: What are "similar" and "independent" molecules?
- In [Lenz et al 2020] for a BSC with crossover w:

Proof outline - "far" and "close" molecules

- Challenge: What are "similar" and "independent" molecules?
- In [Lenz et al 2020] for a BSC with crossover w:
- Molecules are different if $d_{H}\left(x_{i}^{L}, x_{j}^{L}\right) \geq 4 w L$

Proof outline - "far" and "close" molecules

- Challenge: What are "similar" and "independent" molecules?
- In [Lenz et al 2020] for a BSC with crossover w :
- Molecules are different if $d_{H}\left(x_{i}^{L}, x_{j}^{L}\right) \geq 4 w L$
- In our work: Soft similarity measure, based on conditional typical sets

Proof outline - "far" and "close" molecules

- Challenge: What are "similar" and "independent" molecules?
- In [Lenz et al 2020] for a BSC with crossover w :
- Molecules are different if $d_{H}\left(x_{i}^{L}, x_{j}^{L}\right) \geq 4 w L$
- In our work: Soft similarity measure, based on conditional typical sets
- The conditional typical set $\mathcal{T}_{L}\left([W] \mid x_{0}^{L}\right) \subset \mathcal{Y}^{L}$ has high probability when $Y^{L} \sim W^{L}\left(\cdot \mid x_{0}^{L}\right)$

Proof outline - "far" and "close" molecules

- Challenge: What are "similar" and "independent" molecules?
- In [Lenz et al 2020] for a BSC with crossover w :
- Molecules are different if $d_{H}\left(x_{i}^{L}, x_{j}^{L}\right) \geq 4 w L$
- In our work: Soft similarity measure, based on conditional typical sets
- The conditional typical set $\mathcal{T}_{L}\left([W] \mid x_{0}^{L}\right) \subset \mathcal{Y}^{L}$ has high probability when $Y^{L} \sim W^{L}\left(\cdot \mid x_{0}^{L}\right)$
- x_{1}^{L} is "far" ("independent") from x_{0}^{L} if $\mathcal{T}_{L}\left([W] \mid x_{0}^{L}\right)$ has low probability when $Y^{L} \sim W^{L}\left(\cdot \mid x_{1}^{L}\right)$

Proof outline - "far" and "close" molecules

- Challenge: What are "similar" and "independent" molecules?
- In [Lenz et al 2020] for a BSC with crossover w :
- Molecules are different if $d_{H}\left(x_{i}^{L}, x_{j}^{L}\right) \geq 4 w L$
- In our work: Soft similarity measure, based on conditional typical sets
- The conditional typical set $\mathcal{T}_{L}\left([W] \mid x_{0}^{L}\right) \subset \mathcal{Y}^{L}$ has high probability when $Y^{L} \sim W^{L}\left(\cdot \mid x_{0}^{L}\right)$
- x_{1}^{L} is "far" ("independent") from x_{0}^{L} if $\mathcal{T}_{L}\left([W] \mid x_{0}^{L}\right)$ has low probability when $Y^{L} \sim W^{L}\left(\cdot \mid x_{1}^{L}\right)$
- The required distance is sub-linear in L

Proof outline - properties of "far" and "close" molecules

(1) Let a set of $\Theta(M)$ pairwise "far" molecules be input to a permuting DNA channel

Proof outline - properties of "far" and "close" molecules

(1) Let a set of $\Theta(M)$ pairwise "far" molecules be input to a permuting DNA channel

- Establish that observing the input and output molecules gain information on the channel permutation

Proof outline - properties of "far" and "close" molecules

(1) Let a set of $\Theta(M)$ pairwise "far" molecules be input to a permuting DNA channel

- Establish that observing the input and output molecules gain information on the channel permutation
- The equivocation given input and output is negligible compared to unconditional entropy

Proof outline - properties of "far" and "close" molecules

(1) Let a set of $\Theta(M)$ pairwise "far" molecules be input to a permuting DNA channel

- Establish that observing the input and output molecules gain information on the channel permutation
- The equivocation given input and output is negligible compared to unconditional entropy
(2) Let a pair of "close" molecules be given

Proof outline - properties of "far" and "close" molecules

(1) Let a set of $\Theta(M)$ pairwise "far" molecules be input to a permuting DNA channel

- Establish that observing the input and output molecules gain information on the channel permutation
- The equivocation given input and output is negligible compared to unconditional entropy
(2) Let a pair of "close" molecules be given
- Establish that the mutual information is essentially as if they are identical $I\left(P_{X}, V^{\oplus 2}\right)$

Proof outline - bounding mutual information

- Upper bound the mutual information $I\left(X^{L M} ; Y^{L M}\right)$ for Fano's argument

Proof outline - bounding mutual information

- Upper bound the mutual information $I\left(X^{L M} ; Y^{L M}\right)$ for Fano's argument
- Use a fixed composition codebook

Proof outline - bounding mutual information

- Upper bound the mutual information $I\left(X^{L M} ; Y^{L M}\right)$ for Fano's argument
- Use a fixed composition codebook
- A genie-aided decoder [Lenz et al 2019], that cluster output molecules to $\tilde{Y}^{L M}$
\Rightarrow Establish an upper bound on $I\left(X^{L M} ; \tilde{Y}^{L M}\right)$

Proof outline - bounding mutual information

- Upper bound the mutual information $I\left(X^{L M} ; Y^{L M}\right)$ for Fano's argument
- Use a fixed composition codebook
- A genie-aided decoder [Lenz et al 2019], that cluster output molecules to $\tilde{Y}^{L M}$
\Rightarrow Establish an upper bound on $I\left(X^{L M} ; \tilde{Y}^{L M}\right)$
- Condition of Q^{N+1} : A subset of the input molecules is pairwise "far", the other subset is a "close" neighbor in the first set

Proof outline - bounding mutual information

- Upper bound the mutual information $I\left(X^{L M} ; Y^{L M}\right)$ for Fano's argument
- Use a fixed composition codebook
- A genie-aided decoder [Lenz et al 2019], that cluster output molecules to $\tilde{Y}^{L M}$
\Rightarrow Establish an upper bound on $I\left(X^{L M} ; \tilde{Y}^{L M}\right)$
- Condition of Q^{N+1} : A subset of the input molecules is pairwise "far", the other subset is a "close" neighbor in the first set
- The tightest bound obtained for all pairwise "far" molecules

Proof outline - a clustering decoder

Figure: A clustering decoder

Proof outline - bounding mutual information

- Bound the average MI over Q^{N+1} via Poissonization

Proof outline - bounding mutual information

- Bound the average MI over Q^{N+1} via Poissonization
- "Single-letterization" is done in two stages (from $M L$ to L and from L to 1)

Proof outline - bounding mutual information

- Bound the average MI over Q^{N+1} via Poissonization
- "Single-letterization" is done in two stages (from $M L$ to L and from L to 1)
- Removing the fixed composition assumption

Proof outline - bounding mutual information

- Bound the average MI over Q^{N+1} via Poissonization
- "Single-letterization" is done in two stages (from $M L$ to L and from L to 1)
- Removing the fixed composition assumption
- Obtaining a bound in which P_{X} is optimized once for all orders d

A prospective refinement of the upper bound

- Recall: The CID is defined with a pair of molecules

$$
\operatorname{CID}\left(P_{X}, V\right)=2 \cdot I\left(P_{X}, V\right)-I\left(P_{X}, V^{\oplus 2}\right)
$$

A prospective refinement of the upper bound

- Recall: The CID is defined with a pair of molecules

$$
\mathrm{CID}\left(P_{X}, V\right)=2 \cdot I\left(P_{X}, V\right)-I\left(P_{X}, V^{\oplus 2}\right)
$$

- Idea: Generalize to a scattering measure for triplets of molecules

A prospective refinement of the upper bound

- Recall: The CID is defined with a pair of molecules

$$
\mathrm{CID}\left(P_{X}, V\right)=2 \cdot I\left(P_{X}, V\right)-I\left(P_{X}, V^{\oplus 2}\right)
$$

- Idea: Generalize to a scattering measure for triplets of molecules
- Why not quadruplets? quintuplets?

A prospective refinement of the upper bound

- Recall: The CID is defined with a pair of molecules

$$
\mathrm{CID}\left(P_{X}, V\right)=2 \cdot I\left(P_{X}, V\right)-I\left(P_{X}, V^{\oplus 2}\right)
$$

- Idea: Generalize to a scattering measure for triplets of molecules
- Why not quadruplets? quintuplets?
- The game is (most likely) not worth the (our) candle

The assumption on the channel

- Recall: $\min _{x \in \mathcal{X}, y \in \mathcal{Y}} W(y \mid x)>0$ is a qualifying condition for the converse

The assumption on the channel

- Recall: $\min _{x \in \mathcal{X}, y \in \mathcal{Y}} W(y \mid x)>0$ is a qualifying condition for the converse
- Technically: Originates from the use of the blowing-up lemma in the proof

The assumption on the channel

- Recall: $\min _{x \in \mathcal{X}, y \in \mathcal{Y}} W(y \mid x)>0$ is a qualifying condition for the converse
- Technically: Originates from the use of the blowing-up lemma in the proof
- Example: binary erasure sequencing channel

The assumption on the channel

- Recall: $\min _{x \in \mathcal{X}, y \in \mathcal{Y}} W(y \mid x)>0$ is a qualifying condition for the converse
- Technically: Originates from the use of the blowing-up lemma in the proof
- Example: binary erasure sequencing channel
- Fundamentally: If $W(y \mid x)=0$ then molecule ordering is easier

The assumption on the channel

- Recall: $\min _{x \in \mathcal{X}, y \in \mathcal{Y}} W(y \mid x)>0$ is a qualifying condition for the converse
- Technically: Originates from the use of the blowing-up lemma in the proof
- Example: binary erasure sequencing channel
- Fundamentally: If $W(y \mid x)=0$ then molecule ordering is easier
- Open problem: Not obvious if this is just a technical condition that can be removed

A side result: MI for IID v.s. fixed composition inputs

Lemma

Let $P_{A} \in \mathcal{P}_{K}(\mathcal{A})$ be a type for length K. Also let $A^{K} \sim P_{A}$ IID and $\tilde{A}^{K} \sim \operatorname{Uniform}\left[\mathcal{T}_{K}\left(P_{A}\right)\right]$, and let B^{K} and \tilde{B}^{K} be their outputs over a DMC. Then

$$
0 \leq I\left(A^{K} ; B^{K}\right)-I\left(\tilde{A}^{K} ; \tilde{B}^{K}\right)=O(\sqrt{K} \cdot \log K)
$$

A side result: MI for IID v.s. fixed composition inputs

Lemma

Let $P_{A} \in \mathcal{P}_{K}(\mathcal{A})$ be a type for length K. Also let $A^{K} \sim P_{A}$ IID and $\tilde{A}^{K} \sim \operatorname{Uniform}\left[\mathcal{T}_{K}\left(P_{A}\right)\right]$, and let B^{K} and \tilde{B}^{K} be their outputs over a DMC. Then

$$
0 \leq I\left(A^{K} ; B^{K}\right)-I\left(\tilde{A}^{K} ; \tilde{B}^{K}\right)=O(\sqrt{K} \cdot \log K)
$$

- Proof:

A side result: MI for IID v.s. fixed composition inputs

Lemma

Let $P_{A} \in \mathcal{P}_{K}(\mathcal{A})$ be a type for length K. Also let $A^{K} \sim P_{A}$ IID and $\tilde{A}^{K} \sim \operatorname{Uniform}\left[\mathcal{T}_{K}\left(P_{A}\right)\right]$, and let B^{K} and \tilde{B}^{K} be their outputs over a DMC. Then

$$
0 \leq I\left(A^{K} ; B^{K}\right)-I\left(\tilde{A}^{K} ; \tilde{B}^{K}\right)=O(\sqrt{K} \cdot \log K)
$$

- Proof:
- Bounding entropy differences via Ornstein's \bar{d}-distance [Polyanskiy and Wu 2016]

A side result: MI for IID v.s. fixed composition inputs

Lemma

Let $P_{A} \in \mathcal{P}_{K}(\mathcal{A})$ be a type for length K. Also let $A^{K} \sim P_{A}$ IID and $\tilde{A}^{K} \sim \operatorname{Uniform}\left[\mathcal{T}_{K}\left(P_{A}\right)\right]$, and let B^{K} and \tilde{B}^{K} be their outputs over a DMC. Then

$$
0 \leq I\left(A^{K} ; B^{K}\right)-I\left(\tilde{A}^{K} ; \tilde{B}^{K}\right)=O(\sqrt{K} \cdot \log K)
$$

- Proof:
- Bounding entropy differences via Ornstein's \bar{d}-distance [Polyanskiy and Wu 2016]
- Bounding \bar{d}-distance by a KL divergence via Marton's transportation inequality [Marton 1996]

A side result: MI for IID v.s. fixed composition inputs

Lemma

Let $P_{A} \in \mathcal{P}_{K}(\mathcal{A})$ be a type for length K. Also let $A^{K} \sim P_{A}$ IID and $\tilde{A}^{K} \sim \operatorname{Uniform}\left[\mathcal{T}_{K}\left(P_{A}\right)\right]$, and let B^{K} and \tilde{B}^{K} be their outputs over a DMC. Then

$$
0 \leq I\left(A^{K} ; B^{K}\right)-I\left(\tilde{A}^{K} ; \tilde{B}^{K}\right)=O(\sqrt{K} \cdot \log K)
$$

- Proof:
- Bounding entropy differences via Ornstein's \bar{d}-distance [Polyanskiy and Wu 2016]
- Bounding \bar{d}-distance by a KL divergence via Marton's transportation inequality [Marton 1996]
- A refined bound appears in [Tang and Polyanskiy 2022]

Outline

(1) Introduction
(2) Achievable bounds
(3) A converse bound
(4) Modulo additive channels
(5) A simplified setting

Modulo-additive channels

Proposition
Let W be a modulo-additive channel, let $P_{X}^{(u n i f)}$ be the uniform distribution over \mathcal{X}. Then, for all

$$
\beta \geq \frac{2}{\operatorname{CID}\left(P_{X}^{(\text {unif })}, W\right)}
$$

it holds that

$$
C(\mathrm{DNA})=\sum_{d \in \mathbb{N}^{+}} \pi_{\alpha}(d) \cdot I\left(P_{X}^{(u n i f)}, W^{\oplus d}\right)-\frac{1}{\beta}\left(1-\pi_{\alpha}(0)\right)
$$

Binary symmetric channels

- For a BSC with crossover probability w

$$
\beta \geq \frac{2}{\log 2-h_{b}(2 w(1-w))} .
$$

Binary symmetric channels

- For a BSC with crossover probability w

$$
\beta \geq \frac{2}{\log 2-h_{b}(2 w(1-w))} .
$$

- [Lenz et al 2019-2020]: Only for $w<1 / 8$

$$
\beta>\bar{\beta}_{\mathrm{cr}}:=\frac{2}{\log 2-h_{b}(4 w)} .
$$

Binary symmetric channels - critical molecule length

Figure: Comparison between [Lenz 2019] and our result

Numerical computation

- Given input distribution P_{X}, all bounds can be accurately computed by convex optimization

Numerical computation

- Given input distribution P_{X}, all bounds can be accurately computed by convex optimization
- Example: Asymmetric channel $|\mathcal{X}|=|\mathcal{Y}|=4$

$$
W_{0}(y \mid x)=\frac{1}{100} \cdot\left[\begin{array}{cccc}
94 & 2 & 2 & 2 \\
2 & 70 & 25 & 3 \\
3 & 2 & 85 & 10 \\
10 & 5 & 5 & 80
\end{array}\right]
$$

Numerical computation

- Given input distribution P_{X}, all bounds can be accurately computed by convex optimization
- Example: Asymmetric channel $|\mathcal{X}|=|\mathcal{Y}|=4$

$$
W_{0}(y \mid x)=\frac{1}{100} \cdot\left[\begin{array}{cccc}
94 & 2 & 2 & 2 \\
2 & 70 & 25 & 3 \\
3 & 2 & 85 & 10 \\
10 & 5 & 5 & 80
\end{array}\right]
$$

- Uniform input distribution $P_{X}=(1 / 4,1 / 4,1 / 4,1 / 4)$ (sub-optimal)

A numerical example - capacity

Figure: Upper and lower bounds on $C\left(\operatorname{DNA}\left(5, \beta, W_{0}\right)\right)$ as a function of β (in nats).

A numerical example - reliability function

Figure: Right: Lower bound on the reliability function $E^{*}\left(R, \operatorname{DNA}\left(5, \beta, W_{0}\right),\{M\}\right)$ as a function of R (in nats).

Conclusion and open problems

(1) Capacity is settled in the low-noise/high- β regime for any DMC W

Conclusion and open problems

(1) Capacity is settled in the low-noise/high- β regime for any DMC W

- What is the capacity in the high-noise/low- β regime?

Conclusion and open problems

(1) Capacity is settled in the low-noise/high- β regime for any DMC W

- What is the capacity in the high-noise/low- β regime?
- Finite blocklength analysis? slow decay rates $O\left(\frac{1}{\log M}\right)$ to limits

Conclusion and open problems

(1) Capacity is settled in the low-noise/high- β regime for any DMC W

- What is the capacity in the high-noise/low- β regime?
- Finite blocklength analysis? slow decay rates $O\left(\frac{1}{\log M}\right)$ to limits
(2) Error probability decays as $e^{-\Theta(M)}$ rather than $e^{-\Theta(M L)}$

Conclusion and open problems

(1) Capacity is settled in the low-noise/high- β regime for any DMC W

- What is the capacity in the high-noise/low- β regime?
- Finite blocklength analysis? slow decay rates $O\left(\frac{1}{\log M}\right)$ to limits
(2) Error probability decays as $e^{-\Theta(M)}$ rather than $e^{-\Theta(M L)}$
- An outage behavior of the channel

Conclusion and open problems

(1) Capacity is settled in the low-noise/high- β regime for any DMC W

- What is the capacity in the high-noise/low- β regime?
- Finite blocklength analysis? slow decay rates $O\left(\frac{1}{\log M}\right)$ to limits
(2) Error probability decays as $e^{-\Theta(M)}$ rather than $e^{-\Theta(M L)}$
- An outage behavior of the channel
- Unlike for capacity, increasing α is not marginal in gain

Conclusion and open problems

(1) Capacity is settled in the low-noise/high- β regime for any DMC W

- What is the capacity in the high-noise/low- β regime?
- Finite blocklength analysis? slow decay rates $O\left(\frac{1}{\log M}\right)$ to limits
(2) Error probability decays as $e^{-\Theta(M)}$ rather than $e^{-\Theta(M L)}$
- An outage behavior of the channel
- Unlike for capacity, increasing α is not marginal in gain

Conclusion and open problems

(1) Capacity is settled in the low-noise/high- β regime for any DMC W

- What is the capacity in the high-noise/low- β regime?
- Finite blocklength analysis? slow decay rates $O\left(\frac{1}{\log M}\right)$ to limits
(2) Error probability decays as $e^{-\Theta(M)}$ rather than $e^{-\Theta(M L)}$
- An outage behavior of the channel
- Unlike for capacity, increasing α is not marginal in gain
N. Weinberger and N. Merhav,
"The DNA Storage Channel: Capacity and Error Probability Bounds,"
IT-T, May 2022

Conclusion and open problems

(1) Capacity is settled in the low-noise/high- β regime for any DMC W

- What is the capacity in the high-noise/low- β regime?
- Finite blocklength analysis? slow decay rates $O\left(\frac{1}{\log M}\right)$ to limits
(2) Error probability decays as $e^{-\Theta(M)}$ rather than $e^{-\Theta(M L)}$
- An outage behavior of the channel
- Unlike for capacity, increasing α is not marginal in gain
N. Weinberger and N. Merhav,
"The DNA Storage Channel: Capacity and Error Probability Bounds,"
IT-T, May 2022

Outline

(1) Introduction
(2) Achievable bounds
(3) A converse bound
4. Modulo additive channels
(5) A simplified setting

Motivation

Previously:
(1) The decoder has extremely high computational complexity ("optimal-like")

Motivation

Previously:

(1) The decoder has extremely high computational complexity ("optimal-like")

- The computation of the metric of a single codeword has complexity $\Theta\left(M^{N}\right)$

Motivation

Previously:

(1) The decoder has extremely high computational complexity ("optimal-like")

- The computation of the metric of a single codeword has complexity $\Theta\left(M^{N}\right)$
(2) The sequencing channel $W^{(L)}$ is a DMC

Motivation

Previously:
(1) The decoder has extremely high computational complexity ("optimal-like")

- The computation of the metric of a single codeword has complexity $\Theta\left(M^{N}\right)$
(2) The sequencing channel $W^{(L)}$ is a DMC
- Practical channels also include deletions, insertions and so on

Motivation

Previously:
(1) The decoder has extremely high computational complexity ("optimal-like")

- The computation of the metric of a single codeword has complexity $\Theta\left(M^{N}\right)$
(2) The sequencing channel $W^{(L)}$ is a DMC
- Practical channels also include deletions, insertions and so on
(3) Codeword length is $M L$ but error probability decays as $e^{-\Theta(M)}$ rather than $e^{-\Theta(M L)}$ (DMC)

Motivation

Previously:
(1) The decoder has extremely high computational complexity ("optimal-like")

- The computation of the metric of a single codeword has complexity $\Theta\left(M^{N}\right)$
(2) The sequencing channel $W^{(L)}$ is a DMC
- Practical channels also include deletions, insertions and so on
(3) Codeword length is $M L$ but error probability decays as $e^{-\Theta(M)}$ rather than $e^{-\Theta(M L)}$ (DMC)
- Improve by increasing coverage depth scaling

$$
\alpha=\frac{N}{M}=\Theta(1) \rightarrow \alpha=\alpha_{M}=\Omega(1)
$$

Motivation

Previously:
(1) The decoder has extremely high computational complexity ("optimal-like")

- The computation of the metric of a single codeword has complexity $\Theta\left(M^{N}\right)$
(2) The sequencing channel $W^{(L)}$ is a DMC
- Practical channels also include deletions, insertions and so on
(3) Codeword length is $M L$ but error probability decays as $e^{-\Theta(M)}$ rather than $e^{-\Theta(M L)}$ (DMC)
- Improve by increasing coverage depth scaling

$$
\alpha=\frac{N}{M}=\Theta(1) \rightarrow \alpha=\alpha_{M}=\Omega(1)
$$

(4) Capacity increase due to multi-draws can be marginal

Motivation

Previously:
(1) The decoder has extremely high computational complexity ("optimal-like")

- The computation of the metric of a single codeword has complexity $\Theta\left(M^{N}\right)$
(2) The sequencing channel $W^{(L)}$ is a DMC
- Practical channels also include deletions, insertions and so on
(3) Codeword length is $M L$ but error probability decays as $e^{-\Theta(M)}$ rather than $e^{-\Theta(M L)}$ (DMC)
- Improve by increasing coverage depth scaling

$$
\alpha=\frac{N}{M}=\Theta(1) \rightarrow \alpha=\alpha_{M}=\Omega(1)
$$

(4) Capacity increase due to multi-draws can be marginal

- Example: Let W be a BSC with crossover probability $w=0.01$

Motivation

Previously:
(1) The decoder has extremely high computational complexity ("optimal-like")

- The computation of the metric of a single codeword has complexity $\Theta\left(M^{N}\right)$
(2) The sequencing channel $W^{(L)}$ is a DMC
- Practical channels also include deletions, insertions and so on
(3) Codeword length is $M L$ but error probability decays as $e^{-\Theta(M)}$ rather than $e^{-\Theta(M L)}$ (DMC)
- Improve by increasing coverage depth scaling

$$
\alpha=\frac{N}{M}=\Theta(1) \rightarrow \alpha=\alpha_{M}=\Omega(1)
$$

(4) Capacity increase due to multi-draws can be marginal

- Example: Let W be a BSC with crossover probability $w=0.01$
- $C\left(W^{\oplus d}\right)=(0.91,0.97,0.99)$ for $d=(1,2,3)$

Motivation

Previously:
(1) The decoder has extremely high computational complexity ("optimal-like")

- The computation of the metric of a single codeword has complexity $\Theta\left(M^{N}\right)$
(2) The sequencing channel $W^{(L)}$ is a DMC
- Practical channels also include deletions, insertions and so on
(3) Codeword length is $M L$ but error probability decays as $e^{-\Theta(M)}$ rather than $e^{-\Theta(M L)}$ (DMC)
- Improve by increasing coverage depth scaling

$$
\alpha=\frac{N}{M}=\Theta(1) \rightarrow \alpha=\alpha_{M}=\Omega(1)
$$

(4) Capacity increase due to multi-draws can be marginal

- Example: Let W be a BSC with crossover probability $w=0.01$
- $C\left(W^{\oplus d}\right)=(0.91,0.97,0.99)$ for $d=(1,2,3)$

Motivation

Previously:
(1) The decoder has extremely high computational complexity ("optimal-like")

- The computation of the metric of a single codeword has complexity $\Theta\left(M^{N}\right)$
(2) The sequencing channel $W^{(L)}$ is a DMC
- Practical channels also include deletions, insertions and so on
(3) Codeword length is $M L$ but error probability decays as $e^{-\Theta(M)}$ rather than $e^{-\Theta(M L)}$ (DMC)
- Improve by increasing coverage depth scaling

$$
\alpha=\frac{N}{M}=\Theta(1) \rightarrow \alpha=\alpha_{M}=\Omega(1)
$$

(4) Capacity increase due to multi-draws can be marginal

- Example: Let W be a BSC with crossover probability $w=0.01$
- $C\left(W^{\oplus d}\right)=(0.91,0.97,0.99)$ for $d=(1,2,3)$

Encoder and decoder

- Encoder: A coded-index scheme

Encoder and decoder

- Encoder: A coded-index scheme
- An inner code $\mathcal{B}^{(L)} \subset \mathcal{X}^{L}$ is partitioned to M sub-codes $\left\{\mathcal{B}_{m}^{(L)}\right\}_{m \in[M]}$

Encoder and decoder

- Encoder: A coded-index scheme
- An inner code $\mathcal{B}^{(L)} \subset \mathcal{X}^{L}$ is partitioned to M sub-codes $\left\{\mathcal{B}_{m}^{(L)}\right\}_{m \in[M]}$
- An outer-code encodes a message to a sequence $x^{L M}$ where $x_{m}^{L} \in \mathcal{B}_{m}^{(L)}$

Encoder and decoder

- Encoder: A coded-index scheme
- An inner code $\mathcal{B}^{(L)} \subset \mathcal{X}^{L}$ is partitioned to M sub-codes $\left\{\mathcal{B}_{m}^{(L)}\right\}_{m \in[M]}$
- An outer-code encodes a message to a sequence $x^{L M}$ where $x_{m}^{L} \in \mathcal{B}_{m}^{(L)}$
- Decoder:

Encoder and decoder

- Encoder: A coded-index scheme
- An inner code $\mathcal{B}^{(L)} \subset \mathcal{X}^{L}$ is partitioned to M sub-codes $\left\{\mathcal{B}_{m}^{(L)}\right\}_{m \in[M]}$
- An outer-code encodes a message to a sequence $x^{L M}$ where $x_{m}^{L} \in \mathcal{B}_{m}^{(L)}$
- Decoder:
- Inner code decoding: Each output molecule y_{n}^{L} is decoded to a codeword in $\mathcal{B}^{(L)}$

Encoder and decoder

- Encoder: A coded-index scheme
- An inner code $\mathcal{B}^{(L)} \subset \mathcal{X}^{L}$ is partitioned to M sub-codes $\left\{\mathcal{B}_{m}^{(L)}\right\}_{m \in[M]}$
- An outer-code encodes a message to a sequence $x^{L M}$ where $x_{m}^{L} \in \mathcal{B}_{m}^{(L)}$
- Decoder:
- Inner code decoding: Each output molecule y_{n}^{L} is decoded to a codeword in $\mathcal{B}^{(L)}$
- An erasure is declared if there is no consensus on x_{m}^{L}

Encoder and decoder

- Encoder: A coded-index scheme
- An inner code $\mathcal{B}^{(L)} \subset \mathcal{X}^{L}$ is partitioned to M sub-codes $\left\{\mathcal{B}_{m}^{(L)}\right\}_{m \in[M]}$
- An outer-code encodes a message to a sequence $x^{L M}$ where $x_{m}^{L} \in \mathcal{B}_{m}^{(L)}$
- Decoder:
- Inner code decoding: Each output molecule y_{n}^{L} is decoded to a codeword in $\mathcal{B}^{(L)}$
- An erasure is declared if there is no consensus on x_{m}^{L}
- Note: No (substantial) gain from multi-draws

Encoder and decoder

- Encoder: A coded-index scheme
- An inner code $\mathcal{B}^{(L)} \subset \mathcal{X}^{L}$ is partitioned to M sub-codes $\left\{\mathcal{B}_{m}^{(L)}\right\}_{m \in[M]}$
- An outer-code encodes a message to a sequence $x^{L M}$ where $x_{m}^{L} \in \mathcal{B}_{m}^{(L)}$
- Decoder:
- Inner code decoding: Each output molecule y_{n}^{L} is decoded to a codeword in $\mathcal{B}^{(L)}$
- An erasure is declared if there is no consensus on x_{m}^{L}
- Note: No (substantial) gain from multi-draws
- Outer code decoding

Assumptions on the code

- A "black-box" inner code

Assumptions on the code

- A "black-box" inner code
(1) Inner code rate: $R_{b}=\frac{1}{L} \log \left|\mathcal{B}^{(L)}\right|>1 / \beta$.

Assumptions on the code

- A "black-box" inner code
(1) Inner code rate: $R_{b}=\frac{1}{L} \log \left|\mathcal{B}^{(L)}\right|>1 / \beta$.
(2) Vanishing inner code error probability: $\mathrm{pe}_{b}\left(\mathcal{B}^{(L)}\right)=e^{-\Theta\left(L^{\zeta}\right)}$ where $\zeta>0$.

Assumptions on the code

- A "black-box" inner code
(1) Inner code rate: $R_{b}=\frac{1}{L} \log \left|\mathcal{B}^{(L)}\right|>1 / \beta$.
(2) Vanishing inner code error probability: $\mathrm{pe}_{b}\left(\mathcal{B}^{(L)}\right)=e^{-\Theta\left(L^{\zeta}\right)}$ where $\zeta>0$.
- A random outer code

Main result - random coding and expurgated bounds
Theorem

Main result - random coding and expurgated bounds
Theorem

- If $N / M=\Theta(1)$ then

$$
\liminf _{M \rightarrow \infty}-\frac{1}{M} \log \operatorname{pe}\left(\mathcal{C}_{M}, \mathrm{D}_{M}\right) \geq d_{b}\left(1-\frac{R}{R_{b}-1 / \beta} \| e^{-\frac{N}{M}}\right)
$$

for any $R<\left(R_{b}-1 / \beta\right)\left(1-e^{-\frac{N}{M}}\right)$.

Main result - random coding and expurgated bounds

Theorem

- If $N / M=\Theta(1)$ then

$$
\liminf _{M \rightarrow \infty}-\frac{1}{M} \log \operatorname{pe}\left(\mathcal{C}_{M}, \mathrm{D}_{M}\right) \geq d_{b}\left(1-\frac{R}{R_{b}-1 / \beta} \| e^{-\frac{N}{M}}\right)
$$

for any $R<\left(R_{b}-1 / \beta\right)\left(1-e^{-\frac{N}{M}}\right)$.

- If $N / M=\omega(1)$ then

$$
\begin{aligned}
& \liminf _{N \rightarrow \infty}-\frac{1}{N} \log \operatorname{pe}\left(\mathcal{C}_{M}, \mathrm{D}_{M}\right) \\
\geq & \begin{cases}\frac{1}{2}\left[1-\frac{R}{R_{b}-1 / \beta}\right], & \frac{N}{M L}<2\left(R_{b}-1 / \beta\right) \\
\frac{M L}{N}\left[R_{b}-1 / \beta-R\right], & 2\left(R_{b}-1 / \beta\right) \leq \frac{N}{M L}<4\left(R_{b}-1 / \beta\right) \\
\frac{1}{4}\left[1-\frac{R}{R_{b}-1 / \beta}\right], & \frac{N}{M L}>4\left(R_{b}-1 / \beta\right)\end{cases}
\end{aligned}
$$

for any $R<R_{b}-1 / \beta$.

Main result - random coding and expurgated bounds
Theorem

- If $N / M=\Theta(1)$ then

$$
\liminf _{M \rightarrow \infty}-\frac{1}{M} \log \operatorname{pe}\left(\mathcal{C}_{M}, \mathrm{D}_{M}\right) \geq d_{b}\left(1-\frac{R}{R_{b}-1 / \beta} \| e^{-\frac{N}{M}}\right)
$$

for any $R<\left(R_{b}-1 / \beta\right)\left(1-e^{-\frac{N}{M}}\right)$.

- If $N / M=\omega(1)$ then

$$
\begin{aligned}
& \liminf _{N \rightarrow \infty}-\frac{1}{N} \log \operatorname{pe}\left(\mathcal{C}_{M}, \mathrm{D}_{M}\right) \\
\geq & \begin{cases}\frac{1}{2}\left[1-\frac{R}{R_{b}-1 / \beta}\right], & \frac{N}{M L}<2\left(R_{b}-1 / \beta\right) \\
\frac{M L}{N}\left[R_{b}-1 / \beta-R\right], & 2\left(R_{b}-1 / \beta\right) \leq \frac{N}{M L}<4\left(R_{b}-1 / \beta\right) \\
\frac{1}{4}\left[1-\frac{R}{R_{b}-1 / \beta}\right], & \frac{N}{M L}>4\left(R_{b}-1 / \beta\right)\end{cases}
\end{aligned}
$$

for any $R<R_{b}-1 / \beta$.

- Based on random coding and expurgated analysis

Main result - discussion

(1) A phase transition between $N=\Theta(M)$ and $N=\omega(M)$

Main result - discussion

(1) A phase transition between $N=\Theta(M)$ and $N=\omega(M)$
(2) Expurgation improves in the regime $\frac{N}{M L}>4\left(R_{b}-1 / \beta\right)$

Main result - discussion

(1) A phase transition between $N=\Theta(M)$ and $N=\omega(M)$
(2) Expurgation improves in the regime $\frac{N}{M L}>4\left(R_{b}-1 / \beta\right)$
(3) A slow decrease $O\left(\frac{1}{\log M}\right)$ to the asymptotic scaling

Main result - discussion

(1) A phase transition between $N=\Theta(M)$ and $N=\omega(M)$
(2) Expurgation improves in the regime $\frac{N}{M L}>4\left(R_{b}-1 / \beta\right)$
(3) A slow decrease $O\left(\frac{1}{\log M}\right)$ to the asymptotic scaling
(4) Establishing tightness of the bound seems challenging

Main result - discussion

(1) A phase transition between $N=\Theta(M)$ and $N=\omega(M)$
(2) Expurgation improves in the regime $\frac{N}{M L}>4\left(R_{b}-1 / \beta\right)$
(3) A slow decrease $O\left(\frac{1}{\log M}\right)$ to the asymptotic scaling
(4) Establishing tightness of the bound seems challenging

- Poissonization is used in the proof - tight for expectations but not for tails

Conclusion

- A simplified analysis of a DNA storage scheme

Conclusion

- A simplified analysis of a DNA storage scheme
- Towards practical encoding/decoding methods

Conclusion

- A simplified analysis of a DNA storage scheme
- Towards practical encoding/decoding methods
- Error probability decays as $e^{-\Theta(N)}$

Conclusion

- A simplified analysis of a DNA storage scheme
- Towards practical encoding/decoding methods
- Error probability decays as $e^{-\Theta(N)}$
- Increasing coverage depth is vital for improving error probability scaling

Conclusion

- A simplified analysis of a DNA storage scheme
- Towards practical encoding/decoding methods
- Error probability decays as $e^{-\Theta(N)}$
- Increasing coverage depth is vital for improving error probability scaling

Conclusion

- A simplified analysis of a DNA storage scheme
- Towards practical encoding/decoding methods
- Error probability decays as $e^{-\Theta(N)}$
- Increasing coverage depth is vital for improving error probability scaling
N. Weinberger
"Error Probability Bounds for Coded-Index DNA Storage Systems,"
IT-T, November 2022

Conclusion

- A simplified analysis of a DNA storage scheme
- Towards practical encoding/decoding methods
- Error probability decays as $e^{-\Theta(N)}$
- Increasing coverage depth is vital for improving error probability scaling
N. Weinberger
"Error Probability Bounds for Coded-Index DNA Storage Systems,"
IT-T, November 2022
Thank You!

