The DNA Storage Channel: Capacity and Error Probability Bounds

Nir Weinberger and Neri Merhav

Technion - Israel Institute of Technology, Israel

Outline

1 Introduction

- **2** Achievable bounds
- **3** A converse bound
- **4** Modulo additive channels
- **5** A simplified setting

• Why store information in DNA strands?

- Why store information in DNA strands?
 - Enormous information density: 5 grams can store $8\cdot 10^{21}$ bits

- Why store information in DNA strands?
 - Enormous information density: 5 grams can store $8\cdot 10^{21}$ bits
 - Extreme longevity: Messages from mammoths...

- Why store information in DNA strands?
 - Enormous information density: 5 grams can store $8\cdot 10^{21}$ bits
 - Extreme longevity: Messages from mammoths...
- Working prototypes starting from 2012, world record $\sim 200 \text{MB}$ [Organick et al 2018]

- Why store information in DNA strands?
 - Enormous information density: 5 grams can store $8\cdot 10^{21}$ bits
 - Extreme longevity: Messages from mammoths...
- Working prototypes starting from 2012, world record $\sim 200 \text{MB}$ [Organick et al 2018]
- Still costly: \sim \$500 per 1MB of data

- Why store information in DNA strands?
 - Enormous information density: 5 grams can store $8\cdot 10^{21}$ bits
 - Extreme longevity: Messages from mammoths...
- Working prototypes starting from 2012, world record ~ 200MB [Organick et al 2018]
- Still costly: \sim \$500 per 1MB of data
- Check out: "Information-Theoretic Foundations of DNA Data Storage" [Shomorony and Heckel, FnT, 2022]

The DNA storage channel model – writing/encoder

• Alphabet \mathcal{X} , in real-life $\mathcal{X} = \{A, C, G, T\}$

The DNA storage channel model – writing/encoder

- Alphabet \mathcal{X} , in real-life $\mathcal{X} = \{A, C, G, T\}$
- A DNA molecule is a *sequence* $x^L \in \mathcal{X}^L$ (order matters)

- Alphabet \mathcal{X} , in real-life $\mathcal{X} = \{A, C, G, T\}$
- A DNA molecule is a *sequence* $x^L \in \mathcal{X}^L$ (order matters)
- A codeword is a *multiset* of *M* molecules (no order)

$$x^{LM} = (x_0^L, \dots x_{M-1}^L)$$

- Alphabet \mathcal{X} , in real-life $\mathcal{X} = \{A, C, G, T\}$
- A DNA molecule is a *sequence* $x^L \in \mathcal{X}^L$ (order matters)
- A codeword is a *multiset* of M molecules (no order)

$$x^{LM} = (x_0^L, \dots x_{M-1}^L)$$

• A codebook is a set of different codewords $C = \{x^{LM}(j)\}$

• Channel output is a *multiset* of N molecules (order does not matter)

$$Y^{LN} = (Y_0^L, \dots, Y_{N-1}^L)$$

• Channel output is a *multiset* of N molecules (order does not matter)

$$Y^{LN} = (Y_0^L, \dots, Y_{N-1}^L)$$

• Output molecule Y_n^L is generated as:

• Channel output is a *multiset* of N molecules (order does not matter)

$$Y^{LN} = (Y_0^L, \dots, Y_{N-1}^L)$$

- Output molecule Y_n^L is generated as:
 - 1 Sample one of the M molecules of x^{LM} , independently, with replacement

• Channel output is a *multiset* of N molecules (order does not matter)

$$Y^{LN} = (Y_0^L, \dots, Y_{N-1}^L)$$

- Output molecule Y_n^L is generated as:
 - **1** Sample one of the M molecules of x^{LM} , independently, with replacement
 - **2** Sequencing x^L to obtain Y_n^L Modeled as a DMC

$$W\left(y_n^L \mid x^L\right) = \prod_{i \in [L]} W(y_i \mid x_i)$$

• The decoder is a mapping $(\mathcal{Y}^L)^N \to [|\mathcal{C}|]$

- The decoder is a mapping $(\mathcal{Y}^L)^N \to [|\mathcal{C}|]$
- Equivalently, a set of the decision regions $\mathcal{D} = \{\mathcal{D}(j)\}_{j \in [|\mathcal{C}|]}$

- The decoder is a mapping $(\mathcal{Y}^L)^N \to [|\mathcal{C}|]$
- Equivalently, a set of the decision regions $\mathcal{D} = \{\mathcal{D}(j)\}_{j \in [|\mathcal{C}|]}$
 - $\mathcal{D}(j)$ is the decision region of the *j*th codeword

$$\mathcal{D}(j) := \{y^{LN} \colon \mathcal{D}(y^{LN}) = j\}$$

The DNA storage channel model – channel

Figure: DNA storage model (Courtesy of Shomrony and Heckel)

• $\mathsf{DNA}:=(\alpha,\beta,W)$ is a sequence indexed by the number of molecules M

- $\mathsf{DNA}:=(\alpha,\beta,W)$ is a sequence indexed by the number of molecules M
- Coverage depth parameter $\alpha := \frac{N}{M}$

- $\mathsf{DNA}:=(\alpha,\beta,W)$ is a sequence indexed by the number of molecules M
- Coverage depth parameter $\alpha := \frac{N}{M}$
- Molecule length scaling: $\beta := \frac{L}{\log M} > 1$

- $\mathsf{DNA} := (\alpha, \beta, W)$ is a sequence indexed by the number of molecules M
- Coverage depth parameter $\alpha := \frac{N}{M}$
- Molecule length scaling: $\beta := \frac{L}{\log M} > 1$
- DMC sequencing channel W

- $\mathsf{DNA} := (\alpha, \beta, W)$ is a sequence indexed by the number of molecules M
- Coverage depth parameter $\alpha := \frac{N}{M}$
- Molecule length scaling: $\beta := \frac{L}{\log M} > 1$
- DMC sequencing channel W
- Coding rate

$$R = \frac{\log |\mathcal{C}|}{LM}$$

- $\mathsf{DNA} := (\alpha, \beta, W)$ is a sequence indexed by the number of molecules M
- Coverage depth parameter $\alpha := \frac{N}{M}$
- Molecule length scaling: $\beta := \frac{L}{\log M} > 1$
- DMC sequencing channel W
- Coding rate

$$R = \frac{\log |\mathcal{C}|}{LM}$$

• Problem: What is the Shannon **capacity** of DNA?

• Initial ideas: [MacKay, Sayer, and Goldman 2015], [Heckel, Shomorony, Ramchandran and Tse, 2017]

- Initial ideas: [MacKay, Sayer, and Goldman 2015], [Heckel, Shomorony, Ramchandran and Tse, 2017]
- Coding-theoretic papers: [Kovacevic and Tan 2018], [Lenz et al 2019], [Sima, Raviv and Bruck 2021], [Song, Cai, and Immink 2020] [Tang and Farnoud 2021]

- Initial ideas: [MacKay, Sayer, and Goldman 2015], [Heckel, Shomorony, Ramchandran and Tse, 2017]
- Coding-theoretic papers: [Kovacevic and Tan 2018], [Lenz et al 2019], [Sima, Raviv and Bruck 2021], [Song, Cai, and Immink 2020] [Tang and Farnoud 2021]
- The foundations of our work:

- Initial ideas: [MacKay, Sayer, and Goldman 2015], [Heckel, Shomorony, Ramchandran and Tse, 2017]
- Coding-theoretic papers: [Kovacevic and Tan 2018], [Lenz et al 2019], [Sima, Raviv and Bruck 2021], [Song, Cai, and Immink 2020] [Tang and Farnoud 2021]
- The foundations of our work:
 - The model, first capacity results, basic ideas [Shomorony and Heckel, 2021]

- Initial ideas: [MacKay, Sayer, and Goldman 2015], [Heckel, Shomorony, Ramchandran and Tse, 2017]
- Coding-theoretic papers: [Kovacevic and Tan 2018], [Lenz et al 2019], [Sima, Raviv and Bruck 2021], [Song, Cai, and Immink 2020] [Tang and Farnoud 2021]
- The foundations of our work:
 - The model, first capacity results, basic ideas [Shomorony and Heckel, 2021]
 - Refinement to a multinomial model [Lenz, Siegel, Wachter-Zeh, Yaakobi, 2019-2020]

- Initial ideas: [MacKay, Sayer, and Goldman 2015], [Heckel, Shomorony, Ramchandran and Tse, 2017]
- Coding-theoretic papers: [Kovacevic and Tan 2018], [Lenz et al 2019], [Sima, Raviv and Bruck 2021], [Song, Cai, and Immink 2020] [Tang and Farnoud 2021]
- The foundations of our work:
 - The model, first capacity results, basic ideas [Shomorony and Heckel, 2021]
 - Refinement to a multinomial model [Lenz, Siegel, Wachter-Zeh, Yaakobi, 2019-2020]
 - Both works only for $W = \mathsf{BSC}(w)$ (essentially)

Outline

1 Introduction

2 Achievable bounds

3 A converse bound

4 Modulo additive channels

6 A simplified setting

Our strategy

• Error probability analysis of

Our strategy

• Error probability analysis of

1 Encoder: Standard random coding ensemble

Our strategy

• Error probability analysis of

- 1 Encoder: Standard random coding ensemble
- 2 Decoder: High complexity, "optimal-like"
Our strategy

• Error probability analysis of

- 1 Encoder: Standard random coding ensemble
- 2 Decoder: High complexity, "optimal-like"
- Result:

Our strategy

• Error probability analysis of

- 1 Encoder: Standard random coding ensemble
- 2 Decoder: High complexity, "optimal-like"
- Result:
 - **1** A bound on the reliability function

Our strategy

• Error probability analysis of

- 1 Encoder: Standard random coding ensemble
- 2 Decoder: High complexity, "optimal-like"
- Result:
 - **1** A bound on the reliability function
 - 2 Capacity bound is the vanishing point of the reliability function bound

• The *d*-order binomial extension of a DMC: $V : \mathcal{A} \to \mathcal{B}$ is the DMC

$$V^{\oplus d}[b^d \mid a] = \prod_{i=0}^{d-1} V(b_i \mid a)$$

• The *d*-order binomial extension of a DMC: $V : \mathcal{A} \to \mathcal{B}$ is the DMC

$$V^{\oplus d}[b^d \mid a] = \prod_{i=0}^{d-1} V(b_i \mid a)$$

for $a \in \mathcal{A}, b^d \in \mathcal{B}^d$

• Interpretation: "d independent observations on an input symbol $a \in \mathcal{A}$ over V"

• The *d*-order binomial extension of a DMC: $V : \mathcal{A} \to \mathcal{B}$ is the DMC

$$V^{\oplus d}[b^d \mid a] = \prod_{i=0}^{d-1} V(b_i \mid a)$$

- Interpretation: "d independent observations on an input symbol $a \in \mathcal{A}$ over V"
- Notation:

• The *d*-order binomial extension of a DMC: $V : \mathcal{A} \to \mathcal{B}$ is the DMC

$$V^{\oplus d}[b^d \mid a] = \prod_{i=0}^{d-1} V(b_i \mid a)$$

- Interpretation: "d independent observations on an input symbol $a \in \mathcal{A}$ over V"
- Notation:
 - $I(P_X, V)$ is the mutual information of a DMC V with input distribution P_X

• The *d*-order binomial extension of a DMC: $V : \mathcal{A} \to \mathcal{B}$ is the DMC

$$V^{\oplus d}[b^d \mid a] = \prod_{i=0}^{d-1} V(b_i \mid a)$$

- Interpretation: "d independent observations on an input symbol $a \in \mathcal{A}$ over V"
- Notation:
 - $I(P_X, V)$ is the mutual information of a DMC V with input distribution P_X
 - $\pi_{\alpha}(d)$ is the Poisson PMF with parameter α

Theorem

The capacity of the DNA channel is lower bounded as

$$C(\mathsf{DNA}) \geq \max_{P_X \in \mathcal{P}(\mathcal{X})} \sum_{d \in \mathbb{N}^+} \pi_{\alpha}(d) \cdot I(P_X, W^{\oplus d}) - \frac{1}{\beta} \left(1 - \pi_{\alpha}(0)\right).$$

Theorem

The capacity of the DNA channel is lower bounded as

$$C(\mathsf{DNA}) \ge \max_{P_X \in \mathcal{P}(\mathcal{X})} \sum_{d \in \mathbb{N}^+} \pi_{\alpha}(d) \cdot I(P_X, W^{\oplus d}) - \frac{1}{\beta} \left(1 - \pi_{\alpha}(0)\right).$$

• Improves best known results: No constraints on $\alpha, \beta, W!$

$$\max_{P_X \in \mathcal{P}(\mathcal{X})} \sum_{d \in \mathbb{N}^+} \pi_{\alpha}(d) \cdot I(P_X, W^{\oplus d}) - \frac{1}{\beta} (1 - \pi_{\alpha}(0))$$

• The relative number of molecules sampled d times

$$\max_{P_X \in \mathcal{P}(\mathcal{X})} \sum_{d \in \mathbb{N}^+} \pi_{\alpha}(d) \cdot I(P_X, W^{\oplus d}) - \frac{1}{\beta} (1 - \pi_{\alpha}(0))$$

- The relative number of molecules sampled d times
 - The multinomial distribution is "Poissonized"

$$\max_{P_X \in \mathcal{P}(\mathcal{X})} \sum_{d \in \mathbb{N}^+} \pi_{\alpha}(d) \cdot I(P_X, W^{\oplus d}) - \frac{1}{\beta} (1 - \pi_{\alpha}(0))$$

• The mutual information of a molecule sampled d times

$$\max_{P_X \in \mathcal{P}(\mathcal{X})} \sum_{d \in \mathbb{N}^+} \pi_{\alpha}(d) \cdot I(P_X, W^{\oplus d}) - \frac{1}{\beta} (1 - \pi_{\alpha}(0))$$

- The mutual information of a molecule sampled d times
 - The MI is that of $d\text{-}\mathrm{order}$ binomial channel $W^{\oplus d}$

$$\max_{P_X \in \mathcal{P}(\mathcal{X})} \sum_{d \in \mathbb{N}^+} \pi_{\alpha}(d) \cdot I(P_X, W^{\oplus d}) - \frac{1}{\beta} \left(1 - \pi_{\alpha}(0)\right)$$

• A loss term due to the lack of molecule order

$$\max_{P_X \in \mathcal{P}(\mathcal{X})} \sum_{d \in \mathbb{N}^+} \pi_{\alpha}(d) \cdot I(P_X, W^{\oplus d}) - \frac{1}{\beta} \left(1 - \pi_{\alpha}(0)\right)$$

- A loss term due to the lack of molecule order
 - The cost of (implicit) "indexing"

$$\max_{P_{X}\in\mathcal{P}(\mathcal{X})}\sum_{d\in\mathbb{N}^{+}}\pi_{\alpha}(d)\cdot I(P_{X},W^{\oplus d})-\frac{1}{\beta}\left(1-\pi_{\alpha}(0)\right)$$

- Optimal input distribution should compromise all orders $W^{\oplus d}$

Motivation: When is the capacity lower bound achieving input distribution P_X^* is uniform?

• Identify a DMC $V: \mathcal{A} \to \mathcal{B}$ with its probability transition matrix $(|\mathcal{A}| \text{ rows}, |\mathcal{B}| \text{ columns})$

- Identify a DMC $V : \mathcal{A} \to \mathcal{B}$ with its probability transition matrix $(|\mathcal{A}| \text{ rows}, |\mathcal{B}| \text{ columns})$
- Notation: $V_{|\mathcal{B}_0|}$ is a $|\mathcal{A}|$ rows, $|\mathcal{B}_0|$ columns submatrix

- Identify a DMC $V : \mathcal{A} \to \mathcal{B}$ with its probability transition matrix $(|\mathcal{A}| \text{ rows}, |\mathcal{B}| \text{ columns})$
- Notation: $V_{|\mathcal{B}_0}$ is a $|\mathcal{A}|$ rows, $|\mathcal{B}_0|$ columns submatrix
- Symmetric channels

- Identify a DMC $V : \mathcal{A} \to \mathcal{B}$ with its probability transition matrix $(|\mathcal{A}| \text{ rows}, |\mathcal{B}| \text{ columns})$
- Notation: $V_{|\mathcal{B}_0}$ is a $|\mathcal{A}|$ rows, $|\mathcal{B}_0|$ columns submatrix
- Symmetric channels
 - A DMC V is **symmetric** if its rows are permutations of each other and so are the columns [Cover and Thomas]

- Identify a DMC $V : \mathcal{A} \to \mathcal{B}$ with its probability transition matrix $(|\mathcal{A}| \text{ rows}, |\mathcal{B}| \text{ columns})$
- Notation: $V_{|\mathcal{B}_0}$ is a $|\mathcal{A}|$ rows, $|\mathcal{B}_0|$ columns submatrix
- Symmetric channels
 - A DMC V is **symmetric** if its rows are permutations of each other and so are the columns [Cover and Thomas]
 - For example: A modulo-additive channel $B=A\oplus C$

- Identify a DMC $V : \mathcal{A} \to \mathcal{B}$ with its probability transition matrix $(|\mathcal{A}| \text{ rows}, |\mathcal{B}| \text{ columns})$
- Notation: $V_{|\mathcal{B}_0}$ is a $|\mathcal{A}|$ rows, $|\mathcal{B}_0|$ columns submatrix
- Symmetric channels
 - A DMC V is **symmetric** if its rows are permutations of each other and so are the columns [Cover and Thomas]
 - For example: A modulo-additive channel $B=A\oplus C$
 - A DMC V is **weakly symmetric** if its rows are permutations and the columns have equal sums [Cover and Thomas]

- Identify a DMC $V : \mathcal{A} \to \mathcal{B}$ with its probability transition matrix $(|\mathcal{A}| \text{ rows}, |\mathcal{B}| \text{ columns})$
- Notation: $V_{|\mathcal{B}_0}$ is a $|\mathcal{A}|$ rows, $|\mathcal{B}_0|$ columns submatrix
- Symmetric channels
 - A DMC V is **symmetric** if its rows are permutations of each other and so are the columns [Cover and Thomas]
 - For example: A modulo-additive channel $B=A\oplus C$
 - A DMC V is **weakly symmetric** if its rows are permutations and the columns have equal sums [Cover and Thomas]
 - A DMC V is symmetric in Gallager's sense if there exists a partition $\mathcal{B} = \bigcup_i \mathcal{B}_i$ such that $V_{|\mathcal{B}_i|}$ is a symmetric DMC for all i

- Identify a DMC $V : \mathcal{A} \to \mathcal{B}$ with its probability transition matrix $(|\mathcal{A}| \text{ rows}, |\mathcal{B}| \text{ columns})$
- Notation: $V_{|\mathcal{B}_0}$ is a $|\mathcal{A}|$ rows, $|\mathcal{B}_0|$ columns submatrix
- Symmetric channels
 - A DMC V is **symmetric** if its rows are permutations of each other and so are the columns [Cover and Thomas]
 - For example: A modulo-additive channel $B=A\oplus C$
 - A DMC V is **weakly symmetric** if its rows are permutations and the columns have equal sums [Cover and Thomas]
 - A DMC V is symmetric in Gallager's sense if there exists a partition $\mathcal{B} = \bigcup_i \mathcal{B}_i$ such that $V_{|\mathcal{B}_i|}$ is a symmetric DMC for all i
- In all these cases P_X^* for V is uniform

• Back to the DNA channel: We need to maximize $\sum_{d \in \mathbb{N}^+} \pi_{\alpha}(d) \cdot I(P_X, W^{\oplus d})$

- Back to the DNA channel: We need to maximize $\sum_{d \in \mathbb{N}^+} \pi_{\alpha}(d) \cdot I(P_X, W^{\oplus d})$
- Problem: If W is symmetric then $W^{\oplus d}$ is not necessarily symmetric (not even in Gallager's sense)

- Back to the DNA channel: We need to maximize $\sum_{d \in \mathbb{N}^+} \pi_{\alpha}(d) \cdot I(P_X, W^{\oplus d})$
- Problem: If W is symmetric then $W^{\oplus d}$ is not necessarily symmetric (not even in Gallager's sense)
- Example:

$$W_1 = \frac{1}{15} \cdot \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 2 & 5 & 1 \\ 2 & 5 & 1 & 3 & 4 \\ 3 & 4 & 5 & 1 & 2 \\ 5 & 1 & 4 & 2 & 3 \end{bmatrix}$$

but $W_1^{\oplus 2}$ is not symmetric

- Back to the DNA channel: We need to maximize $\sum_{d \in \mathbb{N}^+} \pi_{\alpha}(d) \cdot I(P_X, W^{\oplus d})$
- Problem: If W is symmetric then $W^{\oplus d}$ is not necessarily symmetric (not even in Gallager's sense)
- Example:

$$W_1 = \frac{1}{15} \cdot \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 2 & 5 & 1 \\ 2 & 5 & 1 & 3 & 4 \\ 3 & 4 & 5 & 1 & 2 \\ 5 & 1 & 4 & 2 & 3 \end{bmatrix}$$

but $W_1^{\oplus 2}$ is not symmetric

• The capacity achieving input distribution is *not* uniform

- Back to the DNA channel: We need to maximize $\sum_{d \in \mathbb{N}^+} \pi_{\alpha}(d) \cdot I(P_X, W^{\oplus d})$
- Problem: If W is symmetric then $W^{\oplus d}$ is not necessarily symmetric (not even in Gallager's sense)
- Example:

$$W_1 = \frac{1}{15} \cdot \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 2 & 5 & 1 \\ 2 & 5 & 1 & 3 & 4 \\ 3 & 4 & 5 & 1 & 2 \\ 5 & 1 & 4 & 2 & 3 \end{bmatrix}$$

but $W_1^{\oplus 2}$ is not symmetric

• The capacity achieving input distribution is *not* uniform

Proposition

Let $V : \mathcal{A} \to \mathcal{B}$ be a modulo-additive DMC. Then $V^{\oplus d}$ is symmetric in Gallager's sense for all $d \in \mathbb{N}^+$.

16/58

• Also: The counterexample had $|\mathcal{A}| = |\mathcal{B}| = 5$, but $|\mathcal{X}| = 4$ for practical DNA channels

• Also: The counterexample had $|\mathcal{A}| = |\mathcal{B}| = 5$, but $|\mathcal{X}| = 4$ for practical DNA channels

Proposition

• Also: The counterexample had $|\mathcal{A}| = |\mathcal{B}| = 5$, but $|\mathcal{X}| = 4$ for practical DNA channels

Proposition

If $|\mathcal{X}| \leq 4$, $|\mathcal{Y}| \leq |\mathcal{X}|$, and W is a symmetric channel in Gallager's sense, then the lower bound on the capacity is achieved by the uniform input distribution.

• Proof:

• Also: The counterexample had $|\mathcal{A}| = |\mathcal{B}| = 5$, but $|\mathcal{X}| = 4$ for practical DNA channels

Proposition

- Proof:
 - A detailed inspection of all possible channels of $|\mathcal{X}| \leq 4$, $|\mathcal{Y}| \leq |\mathcal{X}|$

• Also: The counterexample had $|\mathcal{A}| = |\mathcal{B}| = 5$, but $|\mathcal{X}| = 4$ for practical DNA channels

Proposition

- Proof:
 - A detailed inspection of all possible channels of $|\mathcal{X}| \leq 4$, $|\mathcal{Y}| \leq |\mathcal{X}|$
 - A taxonomy of small doubly-permutation atoms

• Also: The counterexample had $|\mathcal{A}| = |\mathcal{B}| = 5$, but $|\mathcal{X}| = 4$ for practical DNA channels

Proposition

- Proof:
 - A detailed inspection of all possible channels of $|\mathcal{X}| \leq 4$, $|\mathcal{Y}| \leq |\mathcal{X}|$
 - A taxonomy of small doubly-permutation atoms
- Open questions:
Capacity lower bound (achievable) – input distribution

• Also: The counterexample had $|\mathcal{A}| = |\mathcal{B}| = 5$, but $|\mathcal{X}| = 4$ for practical DNA channels

Proposition

If $|\mathcal{X}| \leq 4$, $|\mathcal{Y}| \leq |\mathcal{X}|$, and W is a symmetric channel in Gallager's sense, then the lower bound on the capacity is achieved by the uniform input distribution.

- Proof:
 - A detailed inspection of all possible channels of $|\mathcal{X}| \leq 4$, $|\mathcal{Y}| \leq |\mathcal{X}|$
 - A taxonomy of small doubly-permutation atoms
- Open questions:
 - When does operations such as binomial extension preserve symmetry?

Capacity lower bound (achievable) – input distribution

• Also: The counterexample had $|\mathcal{A}| = |\mathcal{B}| = 5$, but $|\mathcal{X}| = 4$ for practical DNA channels

Proposition

If $|\mathcal{X}| \leq 4$, $|\mathcal{Y}| \leq |\mathcal{X}|$, and W is a symmetric channel in Gallager's sense, then the lower bound on the capacity is achieved by the uniform input distribution.

- Proof:
 - A detailed inspection of all possible channels of $|\mathcal{X}| \leq 4$, $|\mathcal{Y}| \leq |\mathcal{X}|$
 - A taxonomy of small doubly-permutation atoms
- Open questions:
 - When does operations such as binomial extension preserve symmetry?
 - How can this systematically be proven?

• θ_d represents the fraction of molecules sampled $d \in \mathbb{N}_+$ times

$$\left\{ \theta_d \geq 0, \qquad \sum_{d \in \mathbb{N}} \theta_d = 1 \right\}$$

• θ_d represents the fraction of molecules sampled $d \in \mathbb{N}_+$ times

$$\left\{ \theta_d \geq 0, \qquad \sum_{d \in \mathbb{N}} \theta_d = 1 \right\}$$

• Denote

$$R(\{\theta_d\}) := \sum_{d \in \mathbb{N}} \theta_d \cdot I(P_X, W^{\oplus d}) - \frac{1}{\beta} (1 - \theta_0)$$

• θ_d represents the fraction of molecules sampled $d \in \mathbb{N}_+$ times

$$\left\{ \theta_d \geq 0, \qquad \sum_{d \in \mathbb{N}} \theta_d = 1 \right\}$$

• Denote

$$R(\{\theta_d\}) := \sum_{d \in \mathbb{N}} \theta_d \cdot I(P_X, W^{\oplus d}) - \frac{1}{\beta} (1 - \theta_0)$$

• Can be interpreted as "instantaneous capacity"

• θ_d represents the fraction of molecules sampled $d \in \mathbb{N}_+$ times

$$\left\{ \theta_d \geq 0, \qquad \sum_{d \in \mathbb{N}} \theta_d = 1 \right\}$$

• Denote

$$R(\{\theta_d\}) := \sum_{d \in \mathbb{N}} \theta_d \cdot I(P_X, W^{\oplus d}) - \frac{1}{\beta} (1 - \theta_0)$$

- Can be interpreted as "instantaneous capacity"
- Note: This is a notation only

• θ_d represents the fraction of molecules sampled $d \in \mathbb{N}_+$ times

$$\left\{ \theta_d \geq 0, \qquad \sum_{d \in \mathbb{N}} \theta_d = 1 \right\}$$

• Denote

$$R(\{\theta_d\}) := \sum_{d \in \mathbb{N}} \theta_d \cdot I(P_X, W^{\oplus d}) - \frac{1}{\beta} (1 - \theta_0)$$

- Can be interpreted as "instantaneous capacity"
- Note: This is a notation only
- $d_{\mathrm{KL}}(p \mid\mid q)$ is the binary KL divergence

Reliability function bound

Theorem It holds that

$$\begin{split} \liminf_{M \to \infty} &-\frac{1}{M} \log \overline{\mathsf{pe}}(\mathcal{C}, \mathcal{D}) \geq \\ \max_{P_X \in \mathcal{P}(\mathcal{X})} \inf_{\{\theta_d\}_{d \in \mathbb{N}}} \sum_{d \in \mathbb{N}} \left(1 - \sum_{i \in [d]} \theta_i \right) \cdot d_{KL} \left(\frac{\theta_d}{1 - \sum_{i \in [d]} \theta_i} \left\| \frac{\pi_\alpha(d)}{1 - \sum_{i \in [d]} \pi_\alpha(i)} \right) \right) \end{split}$$

where the infimum is subject to

 $R(\{\theta_d\}) \leq R.$

Reliability function bound

Theorem It holds that

$$\begin{split} \liminf_{M \to \infty} &-\frac{1}{M} \log \overline{\mathsf{pe}}(\mathcal{C}, \mathcal{D}) \geq \\ \max_{P_X \in \mathcal{P}(\mathcal{X})} \inf_{\{\theta_d\}_{d \in \mathbb{N}}} \sum_{d \in \mathbb{N}} \left(1 - \sum_{i \in [d]} \theta_i \right) \cdot d_{KL} \left(\frac{\theta_d}{1 - \sum_{i \in [d]} \theta_i} \left\| \frac{\pi_\alpha(d)}{1 - \sum_{i \in [d]} \pi_\alpha(i)} \right) \right) \end{split}$$

where the infimum is subject to

 $R(\{\theta_d\}) \le R.$

• The exponent vanishes when $\theta_d = \pi_{\alpha}(d)$ for all $d \in \mathbb{N}_+$

Reliability function bound

Theorem It holds that

$$\begin{split} \liminf_{M \to \infty} &-\frac{1}{M} \log \overline{\mathsf{pe}}(\mathcal{C}, \mathcal{D}) \geq \\ \max_{P_X \in \mathcal{P}(\mathcal{X})} \inf_{\{\theta_d\}_{d \in \mathbb{N}}} \sum_{d \in \mathbb{N}} \left(1 - \sum_{i \in [d]} \theta_i \right) \cdot d_{KL} \left(\frac{\theta_d}{1 - \sum_{i \in [d]} \theta_i} \left\| \frac{\pi_\alpha(d)}{1 - \sum_{i \in [d]} \pi_\alpha(i)} \right) \right) \end{split}$$

where the infimum is subject to

$$R(\{\theta_d\}) \le R.$$

- The exponent vanishes when $\theta_d = \pi_\alpha(d)$ for all $d \in \mathbb{N}_+$
- \Rightarrow Capacity lower bound follows as a corollary

 $C(\mathsf{DNA}) \ge R(\{\pi_{\alpha}(d)\}).$

• The exponent is dominated by **outage** $R(\{\theta_d\}) \leq R$

• The exponent is dominated by **outage** $R(\{\theta_d\}) \leq R$

• Outage is caused by under-sampled molecules

- The exponent is dominated by **outage** $R(\{\theta_d\}) \leq R$
 - Outage is caused by under-sampled molecules
- Error probability decays as $e^{-\Theta(M)}$ and not $e^{-\Theta(ML)} = e^{-\Theta(M\log M)}!$

- The exponent is dominated by **outage** $R(\{\theta_d\}) \leq R$
 - Outage is caused by under-sampled molecules
- Error probability decays as $e^{-\Theta(M)}$ and not $e^{-\Theta(ML)} = e^{-\Theta(M\log M)}!$
- Proof:

- The exponent is dominated by **outage** $R(\{\theta_d\}) \leq R$
 - Outage is caused by under-sampled molecules
- Error probability decays as $e^{-\Theta(M)}$ and not $e^{-\Theta(ML)} = e^{-\Theta(M\log M)}!$
- Proof:

1 Standard IID random coding ensemble

- The exponent is dominated by **outage** $R(\{\theta_d\}) \leq R$
 - Outage is caused by under-sampled molecules
- Error probability decays as $e^{-\Theta(M)}$ and not $e^{-\Theta(ML)} = e^{-\Theta(M\log M)}!$
- Proof:
 - 1 Standard IID random coding ensemble
 - 2 High complexity, "optimal-like", decoder

• Very different!

- Very different!
- Encoder:

- Very different!
- Encoder:
 - No explicit indexing of molecules

- Very different!
- Encoder:
 - No explicit indexing of molecules
 - No inner/outer code

- Very different!
- Encoder:
 - No explicit indexing of molecules
 - No inner/outer code
- Decoder:

- Very different!
- Encoder:
 - No explicit indexing of molecules
 - No inner/outer code
- Decoder:
 - No greedy clustering as in [Lenz et al 2019]

- Very different!
- Encoder:
 - No explicit indexing of molecules
 - No inner/outer code
- Decoder:
 - No greedy clustering as in [Lenz et al 2019]
 - Clustering requires defining a metric suitable to BSC/symmetric channels

- Very different!
- Encoder:
 - No explicit indexing of molecules
 - No inner/outer code
- Decoder:
 - No greedy clustering as in [Lenz et al 2019]
 - Clustering requires defining a metric suitable to BSC/symmetric channels
 - Hard clustering is the source of limited regime of (α, β, W)

- Very different!
- Encoder:
 - No explicit indexing of molecules
 - No inner/outer code
- Decoder:
 - No greedy clustering as in [Lenz et al 2019]
 - Clustering requires defining a metric suitable to BSC/symmetric channels
 - Hard clustering is the source of limited regime of (α, β, W)
 - Bonus: The decoder is universal w.r.t. W

Figure: Sampling types

• A new notion of *sampling types:*

- A new notion of *sampling types:*
 - U^N is the molecule index vector U_n is the molecule sampled at the *n*th draw

- A new notion of *sampling types:*
 - U^N is the molecule index vector U_n is the molecule sampled at the *n*th draw
 - S^M is the molecule duplicate vector S_m is the number of times the *m*th molecule was sampled

- A new notion of *sampling types*:
 - U^N is the molecule index vector U_n is the molecule sampled at the *n*th draw
 - S^M is the molecule duplicate vector S_m is the number of times the *m*th molecule was sampled
 - Q^{N+1} is the *amplification vector* Q_d is the number of molecules sampled d times

- A new notion of *sampling types:*
 - U^N is the molecule index vector U_n is the molecule sampled at the *n*th draw
 - S^M is the molecule duplicate vector S_m is the number of times the *m*th molecule was sampled
 - Q^{N+1} is the *amplification vector* Q_d is the number of molecules sampled d times
- Related via the empirical count operator ${\mathcal N}$

$$Q^{N+1} = \mathscr{N}(S^M) = \mathscr{N}^{(2)}(U^N)$$

- A new notion of *sampling types*:
 - U^N is the molecule index vector $-U_n$ is the molecule sampled at the *n*th draw
 - S^{M} is the molecule duplicate vector $-S_m$ is the number of times the *m*th molecule was sampled
 - Q^{N+1} is the *amplification vector* Q_d is the number of molecules sampled d times
- Related via the empirical count operator ${\mathcal N}$

$$Q^{N+1}=\mathcal{N}(S^M)=\mathcal{N}^{(2)}(U^N)$$

• The analysis requires estimating asymptotic sizes of sampling type classes, e.g.

$$\mathscr{T}_{q^{N+1}}^{(2)} = \left\{ \boldsymbol{u}^N \in [M]^N \colon \mathscr{N}^{(2)}(\boldsymbol{u}^N) = q^{N+1} \right\}$$

- A new notion of *sampling types:*
 - U^N is the molecule index vector $-U_n$ is the molecule sampled at the *n*th draw
 - S^M is the molecule duplicate vector S_m is the number of times the *m*th molecule was sampled
 - Q^{N+1} is the *amplification vector* Q_d is the number of molecules sampled d times
- Related via the empirical count operator ${\mathcal N}$

$$Q^{N+1}=\mathcal{N}(S^M)=\mathcal{N}^{(2)}(U^N)$$

• The analysis requires estimating asymptotic sizes of sampling type classes, e.g.

$$\mathscr{T}^{(2)}_{q^{N+1}} = \left\{ u^N \in [M]^N \colon \mathscr{N}^{(2)}(u^N) = q^{N+1} \right\}$$

• Estimation via restricted partition numbers [Hardy and Ramanujan, Uspensky, and Rademacher]

23/58

Proof snippets – channel model

• For all U^N with a given q^{N+1} amplification vector, the channel operation is "equivalent"

Proof snippets – channel model

- For all U^N with a given q^{N+1} amplification vector, the channel operation is "equivalent"
- A mixture (over orders d) of binomial channels $W^{\oplus d},$ with mixing coefficients $\frac{q_d}{M}$

$$\begin{aligned} \mathcal{L}\left[y^{LN} \mid x^{LM}\right] &= \sum_{q^{N+1} \in \mathscr{Q}(M,N)} \mathbb{P}\left[U^N \in \mathscr{T}_{q^{N+1}}^{(2)}\right] \\ &\times \sum_{u^N \in \mathscr{T}_{q^{N+1}}^{(2)}} \frac{1}{|\mathscr{T}_{q^{N+1}}^{(2)}|} \prod_{d=0}^N W^{\oplus d} \left[b^d_{\mathcal{K}_d(u^N)} \mid a_{\mathcal{K}_d(u^N)}\right] \end{aligned}$$

$Proof\ snippets-decoder$

• The decoder is based on a metric (score)

$$\hat{x}^{ML} := \operatorname*{arg\,max}_{x^{LM} \in \mathcal{C}} \lambda(Y^{LN} \mid x^{LM})$$
• The decoder is based on a metric (score)

$$\hat{x}^{ML} := \mathop{\arg\max}_{x^{LM} \in \mathcal{C}} \lambda(Y^{LN} \mid x^{LM})$$

• Recall: Molecule U_n was sampled at time $n \in [N]$. A sampling vector is $U^N \in [M]^N$

• The decoder is based on a metric (score)

$$\hat{x}^{ML} := \operatorname*{arg\,max}_{x^{LM} \in \mathcal{C}} \lambda(Y^{LN} \mid x^{LM})$$

- Recall: Molecule U_n was sampled at time $n \in [N]$. A sampling vector is $U^N \in [M]^N$
- The metric is a maximization over all sampling events

$$\lambda(\boldsymbol{y}^{LN} \mid \boldsymbol{x}^{LM}) = \max_{\boldsymbol{u}^N} \lambda(\boldsymbol{Y}^{NL}, \boldsymbol{x}^{ML}; \boldsymbol{u}^N)$$

$Proof\ snippets-decoder$

$$\lambda(y^{LN} \mid x^{LM}; u^N) := -(1 - \theta_0) M \log M + \sum_{d \in [N+1]} \theta_d L \cdot \left[D(\hat{P}^d(x^{LM}; u^N) \mid\mid P_X) + I_{\hat{P}^d(x^{LM}, y^{LN}; u^N)}(A; B^d) \right]$$

$Proof\ snippets-decoder$

• The conditional score:

$$\lambda(y^{LN} \mid x^{LM}; u^N) := -(1 - \theta_0) M \log M + \sum_{d \in [N+1]} \theta_d L \cdot \left[D(\hat{P}^d(x^{LM}; u^N) \mid\mid P_X) + I_{\hat{P}^d(x^{LM}, y^{LN}; u^N)}(A; B^d) \right]$$

1 Based on the empirical mutual information (MMI)

• The conditional score:

$$\lambda(y^{LN} \mid x^{LM}; u^N) := -(1 - \theta_0) M \log M + \sum_{d \in [N+1]} \theta_d L \cdot \left[D(\hat{P}^d(x^{LM}; u^N) \mid\mid P_X) + I_{\hat{P}^d(x^{LM}, y^{LN}; u^N)}(A; B^d) \right]$$

Based on the empirical mutual information (MMI)
Does not depend on the channel W (universal)

• The conditional score:

$$\lambda(y^{LN} \mid x^{LM}; u^N) := -(1 - \theta_0) M \log M + \sum_{d \in [N+1]} \theta_d L \cdot \left[D(\hat{P}^d(x^{LM}; u^N) \mid \mid P_X) + I_{\hat{P}^d(x^{LM}, y^{LN}; u^N)}(A; B^d) \right]$$

Based on the empirical mutual information (MMI)
Does not depend on the channel W (universal)
Adapted for the IID ensemble using a KL divergence term

$$\lambda(y^{LN} \mid x^{LM}; u^N) := -(1 - \theta_0) M \log M + \sum_{d \in [N+1]} \theta_d L \cdot \left[D(\hat{P}^d(x^{LM}; u^N) \mid \mid P_X) + I_{\hat{P}^d(x^{LM}, y^{LN}; u^N)}(A; B^d) \right]$$

- Based on the empirical mutual information (MMI)
 Does not depend on the channel W (universal)
 Adapted for the IID ensemble using a KL divergence term
 - Fixed-composition codewords is problematic:

$$\lambda(y^{LN} \mid x^{LM}; u^N) := -(1 - \theta_0) M \log M + \sum_{d \in [N+1]} \theta_d L \cdot \left[D(\hat{P}^d(x^{LM}; u^N) \mid\mid P_X) + I_{\hat{P}^d(x^{LM}, y^{LN}; u^N)}(A; B^d) \right]$$

- 1 Based on the empirical mutual information (MMI)
 - Does not depend on the channel W (universal)
- **2** Adapted for the IID ensemble using a KL divergence term
 - Fixed-composition codewords is problematic:
 - A full codeword may have fixed composition, but not each molecule

$$\lambda(y^{LN} \mid x^{LM}; u^N) := -(1 - \theta_0) M \log M + \sum_{d \in [N+1]} \theta_d L \cdot \left[D(\hat{P}^d(x^{LM}; u^N) \mid\mid P_X) + I_{\hat{P}^d(x^{LM}, y^{LN}; u^N)}(A; B^d) \right]$$

- 1 Based on the empirical mutual information (MMI)
 - Does not depend on the channel W (universal)
- **2** Adapted for the IID ensemble using a KL divergence term
 - Fixed-composition codewords is problematic:
 - A full codeword may have fixed composition, but not each molecule
 - Fixed-composition molecules is too restrictive

$$\lambda(y^{LN} \mid x^{LM}; u^N) := -(1 - \theta_0) M \log M + \sum_{d \in [N+1]} \theta_d L \cdot \left[D(\hat{P}^d(x^{LM}; u^N) \mid\mid P_X) + I_{\hat{P}^d(x^{LM}, y^{LN}; u^N)}(A; B^d) \right]$$

- 1 Based on the empirical mutual information (MMI)
 - Does not depend on the channel W (universal)
- **2** Adapted for the IID ensemble using a KL divergence term
 - Fixed-composition codewords is problematic:
 - A full codeword may have fixed composition, but not each molecule
 - Fixed-composition molecules is too restrictive
- **3** A correction term: Not all sampling events have the same probability ("sampling types")

$$\lambda(y^{LN} \mid x^{LM}; u^N) := -(1 - \theta_0) M \log M + \sum_{d \in [N+1]} \theta_d L \cdot \left[D(\hat{P}^d(x^{LM}; u^N) \mid \mid P_X) + I_{\hat{P}^d(x^{LM}, y^{LN}; u^N)}(A; B^d) \right]$$

- 1 Based on the empirical mutual information (MMI)
 - Does not depend on the channel W (universal)
- **2** Adapted for the IID ensemble using a KL divergence term
 - Fixed-composition codewords is problematic:
 - A full codeword may have fixed composition, but not each molecule
 - Fixed-composition molecules is too restrictive
- **3** A correction term: Not all sampling events have the same probability ("sampling types")
 - Inspired by the analysis of [Csiszár 1980] for joint source-channel coding

• Condition on a given amplification vector $Q^{N+1} = q^{N+1}$

- Condition on a given amplification vector $Q^{N+1} = q^{N+1}$
- Random coding analysis of the error probability of the universal decoder

- Condition on a given amplification vector $Q^{N+1} = q^{N+1}$
- Random coding analysis of the error probability of the universal decoder
 - Method of types (on steroids...)

- Condition on a given amplification vector $Q^{N+1} = q^{N+1}$
- Random coding analysis of the error probability of the universal decoder
 - Method of types (on steroids...)
 - An obstacle:

- Condition on a given amplification vector $Q^{N+1} = q^{N+1}$
- Random coding analysis of the error probability of the universal decoder
 - Method of types (on steroids...)
 - An obstacle:
 - The order $d \in [N+1]$ is unbounded as N increases

- Condition on a given amplification vector $Q^{N+1} = q^{N+1}$
- Random coding analysis of the error probability of the universal decoder
 - Method of types (on steroids...)
 - An obstacle:
 - The order $d \in [N+1]$ is unbounded as N increases
 - The maximal output alphabet size of $\{V^{\oplus d}\}_{d \in [N]}$ increases with blocklength!

- Condition on a given amplification vector $Q^{N+1} = q^{N+1}$
- Random coding analysis of the error probability of the universal decoder
 - Method of types (on steroids...)
 - An obstacle:
 - The order $d \in [N+1]$ is unbounded as N increases
 - The maximal output alphabet size of $\{V^{\oplus d}\}_{d \in [N]}$ increases with blocklength!
 - Solution: A careful truncation argument

- Condition on a given amplification vector $Q^{N+1} = q^{N+1}$
- Random coding analysis of the error probability of the universal decoder
 - Method of types (on steroids...)
 - An obstacle:
 - The order $d \in [N+1]$ is unbounded as N increases
 - The maximal output alphabet size of $\{V^{\oplus d}\}_{d \in [N]}$ increases with blocklength!
 - Solution: A careful truncation argument
 - Assuming $q_d = 0$ for all $d \ge \overline{d}$

- Condition on a given amplification vector $Q^{N+1} = q^{N+1}$
- Random coding analysis of the error probability of the universal decoder
 - Method of types (on steroids...)
 - An obstacle:
 - The order $d \in [N+1]$ is unbounded as N increases
 - The maximal output alphabet size of $\{V^{\oplus d}\}_{d \in [N]}$ increases with blocklength!
 - Solution: A careful truncation argument
 - Assuming $q_d = 0$ for all $d \ge \overline{d}$
 - \overline{d} is optimized later on

• The conditional analysis shows that if

$$R \le \Gamma_{\overline{d}}(q^{N+1}) := \sum_{d \in [\overline{d}+1]} \frac{q_d}{M} \cdot I(P_X, W^{\oplus d}) - \frac{1}{\beta} \left(1 - \frac{q_0}{M}\right)$$

then the conditional error probability decays as $e^{-\Theta(ML)}$

• The conditional analysis shows that if

$$R \le \Gamma_{\overline{d}}(q^{N+1}) := \sum_{d \in [\overline{d}+1]} \frac{q_d}{M} \cdot I(P_X, W^{\oplus d}) - \frac{1}{\beta} \left(1 - \frac{q_0}{M}\right)$$

then the conditional error probability decays as $e^{-\Theta(ML)}$ \bullet It holds

$$\mathbb{P}[\Gamma_{\overline{d}}(Q^{N+1}) < R] = e^{-\Theta(M)}$$

• The conditional analysis shows that if

$$R \le \Gamma_{\overline{d}}(q^{N+1}) := \sum_{d \in [\overline{d}+1]} \frac{q_d}{M} \cdot I(P_X, W^{\oplus d}) - \frac{1}{\beta} \left(1 - \frac{q_0}{M}\right)$$

then the conditional error probability decays as $e^{-\Theta(ML)}$ • It holds

$$\mathbb{P}[\Gamma_{\overline{d}}(Q^{N+1}) < R] = e^{-\Theta(M)}$$

• Hence

$$\overline{\mathsf{pe}}(\mathcal{C},\mathcal{D}) \leq \mathbb{P}[\Gamma_{\overline{d}}(Q^{N+1}) \geq R] \cdot e^{-\Theta(ML)} + \mathbb{P}[\Gamma_{\overline{d}}(Q^{N+1}) < R] \cdot 1.$$

A "bad" sampling event dominates the error probability!

• The conditional analysis shows that if

$$R \le \Gamma_{\overline{d}}(q^{N+1}) := \sum_{d \in [\overline{d}+1]} \frac{q_d}{M} \cdot I(P_X, W^{\oplus d}) - \frac{1}{\beta} \left(1 - \frac{q_0}{M}\right)$$

then the conditional error probability decays as $e^{-\Theta(ML)}$ • It holds

$$\mathbb{P}[\Gamma_{\overline{d}}(Q^{N+1}) < R] = e^{-\Theta(M)}$$

• Hence

$$\overline{\mathrm{pe}}(\mathcal{C},\mathcal{D}) \leq \mathbb{P}[\Gamma_{\overline{d}}(Q^{N+1}) \geq R] \cdot e^{-\Theta(ML)} + \mathbb{P}[\Gamma_{\overline{d}}(Q^{N+1}) < R] \cdot 1.$$

A "bad" sampling event dominates the error probability!

• Evaluation of $\mathbb{P}[\Gamma_{\overline{d}}(Q^{N+1}) < R]$:

• The conditional analysis shows that if

$$R \le \Gamma_{\overline{d}}(q^{N+1}) := \sum_{d \in [\overline{d}+1]} \frac{q_d}{M} \cdot I(P_X, W^{\oplus d}) - \frac{1}{\beta} \left(1 - \frac{q_0}{M}\right)$$

then the conditional error probability decays as $e^{-\Theta(ML)}$ • It holds

$$\mathbb{P}[\Gamma_{\overline{d}}(Q^{N+1}) < R] = e^{-\Theta(M)}$$

• Hence

$$\overline{\mathrm{pe}}(\mathcal{C},\mathcal{D}) \leq \mathbb{P}[\Gamma_{\overline{d}}(Q^{N+1}) \geq R] \cdot e^{-\Theta(ML)} + \mathbb{P}[\Gamma_{\overline{d}}(Q^{N+1}) < R] \cdot 1.$$

A "bad" sampling event dominates the error probability!

- Evaluation of $\mathbb{P}[\Gamma_{\overline{d}}(Q^{N+1}) < R]$:
 - The vector $Q^{\vec{N}+1}$ is the empirical count of a multinomial S^M

• The conditional analysis shows that if

$$R \le \Gamma_{\overline{d}}(q^{N+1}) := \sum_{d \in [\overline{d}+1]} \frac{q_d}{M} \cdot I(P_X, W^{\oplus d}) - \frac{1}{\beta} \left(1 - \frac{q_0}{M}\right)$$

then the conditional error probability decays as $e^{-\Theta(ML)}$ • It holds

$$\mathbb{P}[\Gamma_{\overline{d}}(Q^{N+1}) < R] = e^{-\Theta(M)}$$

• Hence

$$\overline{\mathrm{pe}}(\mathcal{C},\mathcal{D}) \leq \mathbb{P}[\Gamma_{\overline{d}}(Q^{N+1}) \geq R] \cdot e^{-\Theta(ML)} + \mathbb{P}[\Gamma_{\overline{d}}(Q^{N+1}) < R] \cdot 1.$$

A "bad" sampling event dominates the error probability!

- Evaluation of $\mathbb{P}[\Gamma_{\overline{d}}(Q^{N+1}) < R]$:
 - The vector $Q^{\tilde{N}+1}$ is the empirical count of a multinomial S^M
 - The multinomial distribution is *Poissonized*

• The conditional analysis shows that if

$$R \le \Gamma_{\overline{d}}(q^{N+1}) := \sum_{d \in [\overline{d}+1]} \frac{q_d}{M} \cdot I(P_X, W^{\oplus d}) - \frac{1}{\beta} \left(1 - \frac{q_0}{M}\right)$$

then the conditional error probability decays as $e^{-\Theta(ML)}$ • It holds

$$\mathbb{P}[\Gamma_{\overline{d}}(Q^{N+1}) < R] = e^{-\Theta(M)}$$

• Hence

$$\overline{\mathrm{pe}}(\mathcal{C},\mathcal{D}) \leq \mathbb{P}[\Gamma_{\overline{d}}(Q^{N+1}) \geq R] \cdot e^{-\Theta(ML)} + \mathbb{P}[\Gamma_{\overline{d}}(Q^{N+1}) < R] \cdot 1.$$

A "bad" sampling event dominates the error probability!

- Evaluation of $\mathbb{P}[\Gamma_{\overline{d}}(Q^{N+1}) < R]$:
 - The vector $Q^{\tilde{N}+1}$ is the empirical count of a multinomial S^M
 - The multinomial distribution is *Poissonized*
 - Typically for expectations, here for tails

28/58

Error exponent for fixed uniform sampling

• Suppose that each molecule is equally sampled $S_m = \alpha = \frac{N}{M}$ for all $m \in [M]$

Error exponent for fixed uniform sampling

• Suppose that each molecule is equally sampled $S_m = \alpha = \frac{N}{M}$ for all $m \in [M]$

Theorem

Assume the ideal sampling of $S_m = \alpha$ for all $m \in [M]$ with probability 1. Then,

$$\begin{split} \liminf_{M \to \infty} &- \frac{1}{ML} \log \overline{\mathsf{pe}}(\mathcal{C}, \mathcal{D}) \\ \geq \max_{P_X \in \mathcal{P}(\mathcal{X})} \min_{Q_{XY^{\alpha}} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y}^{\alpha})} D(Q_X \mid\mid P_X) + D(Q_{Y^{\alpha}\mid X} \mid\mid W^{\oplus \alpha} \mid Q_X) \\ &+ \left[D(Q_A \mid\mid P_X) + I_Q(X; Y^{\alpha}) - \frac{1}{\beta} - R \right]_+. \end{split}$$

Error exponent for fixed uniform sampling

• Suppose that each molecule is equally sampled $S_m = \alpha = \frac{N}{M}$ for all $m \in [M]$

Theorem

Assume the ideal sampling of $S_m = \alpha$ for all $m \in [M]$ with probability 1. Then,

$$\begin{split} \liminf_{M \to \infty} &- \frac{1}{ML} \log \overline{\mathsf{pe}}(\mathcal{C}, \mathcal{D}) \\ \geq \max_{P_X \in \mathcal{P}(\mathcal{X})} \min_{Q_{XY^{\alpha}} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y}^{\alpha})} D(Q_X \mid\mid P_X) + D(Q_{Y^{\alpha}\mid X} \mid\mid W^{\oplus \alpha} \mid Q_X) \\ &+ \left[D(Q_A \mid\mid P_X) + I_Q(X; Y^{\alpha}) - \frac{1}{\beta} - R \right]_+. \end{split}$$

• Despite loss of order, the error probability decays as $e^{-\Theta(ML)} = e^{-\Theta(M\log M)}!$

29/58

Outline

1 Introduction

- **2** Achievable bounds
- **3** A converse bound
- **4** Modulo additive channels
- **6** A simplified setting

Capacity upper bound (converse) – definitions

• The common-input MI deficit

 $\mathsf{CID}(P_X, V) = 2 \cdot I(P_X, V) - I(P_X, V^{\oplus 2})$

Capacity upper bound (converse) – definitions

• The common-input MI deficit

$$\mathsf{CID}(P_X, V) = 2 \cdot I(P_X, V) - I(P_X, V^{\oplus 2})$$

• Intuitively: The difference in mutual information for two independent inputs vs. identical inputs

Capacity upper bound (converse) – definitions

• The common-input MI deficit

$$\mathsf{CID}(P_X, V) = 2 \cdot I(P_X, V) - I(P_X, V^{\oplus 2})$$

- Intuitively: The difference in mutual information for two independent inputs vs. identical inputs
- The *d*-order excess-rate term by

$$\Omega_d(\beta, P_X, W) := \left[\min\left\{ \frac{1}{\beta}, \frac{2}{\beta} - \mathsf{CID}(P_X, W^{\oplus d}) \right\} \right]_+$$

Theorem

Assume that $\min_{x \in \mathcal{X}, y \in \mathcal{Y}} W(y \mid x) > 0$. Then, the capacity of the DNA channel is upper bounded as

$$\begin{split} C(\mathsf{DNA}) &\leq \max_{P_X \in \mathcal{P}(\mathcal{X})} \sum_{d \in \mathbb{N}^+} \pi_{\alpha}(d) \cdot \left[I(P_X, W^{\oplus d}) + \Omega_d(\beta, P_X, W) \right] \\ &\quad - \frac{1}{\beta} \left(1 - \pi_{\alpha}(0) \right). \end{split}$$

Theorem

Assume that $\min_{x \in \mathcal{X}, y \in \mathcal{Y}} W(y \mid x) > 0$. Then, the capacity of the DNA channel is upper bounded as

$$C(\mathsf{DNA}) \le \max_{P_X \in \mathcal{P}(\mathcal{X})} \sum_{d \in \mathbb{N}^+} \pi_{\alpha}(d) \cdot \left[I(P_X, W^{\oplus d}) + \Omega_d(\beta, P_X, W) \right] - \frac{1}{\beta} \left(1 - \pi_{\alpha}(0) \right).$$

• Similar to the lower bound, except for $\Omega_d(\cdot)$
Tightness of the bound

Corollary

Let

$$P_X^*(\alpha,\beta,W) \in \underset{P_X \in \mathcal{P}(\mathcal{X})}{\arg\max} \sum_{d \in \mathbb{N}^+} \pi_\alpha(d) \cdot \left[I(P_X,W^{\oplus d}) + \Omega_d(\beta,P_X,W) \right],$$

$and \ let$

$$\beta_{cr}(\alpha, W) := \min\left\{\beta \colon \beta \ge \frac{2}{\mathsf{CID}(P_X^*(\alpha, \beta, W), W)}\right\}$$

Then, for all $\beta \geq \beta_{cr}(\alpha, W)$

$$C(\mathsf{DNA}) = \sum_{d \in \mathbb{N}^+} \pi_{\alpha}(d) \cdot I\left(P_X^*(\alpha, \beta_{cr}(\alpha, W), W), W^{\oplus d})\right) - \frac{1}{\beta} \left(1 - \pi_{\alpha}(0)\right).$$

• Warning: The fulle proof is very complicated and long

- Warning: The fulle proof is very complicated and long
 - Builds on the ideas of [Shomrony and Heckel 2021], [Lenz et al 2020]

- Warning: The fulle proof is very complicated and long
 - Builds on the ideas of [Shomrony and Heckel 2021], [Lenz et al 2020]
- Goal: By Fano's inequality, bounding $I(X^{LM}; Y^{LN})$ for any input distribution

- Warning: The fulle proof is very complicated and long
 - Builds on the ideas of [Shomrony and Heckel 2021], [Lenz et al 2020]
- Goal: By Fano's inequality, bounding $I(X^{LM}; Y^{LN})$ for any input distribution
- An *easy* converse

$$I(X^{LM}; Y^{LN}) \le \max_{P_X \in \mathcal{P}(\mathcal{X})} \sum_{d \in \mathbb{N}^+} \pi_{\alpha}(d) \cdot I(P_X, W^{\oplus d})$$

- Warning: The fulle proof is very complicated and long
 - Builds on the ideas of [Shomrony and Heckel 2021], [Lenz et al 2020]
- Goal: By Fano's inequality, bounding $I(X^{LM}; Y^{LN})$ for any input distribution
- An *easy* converse

$$I(X^{LM}; Y^{LN}) \le \max_{P_X \in \mathcal{P}(\mathcal{X})} \sum_{d \in \mathbb{N}^+} \pi_{\alpha}(d) \cdot I(P_X, W^{\oplus d})$$

• Problem: Missing the $-\frac{1}{\beta}(1-\pi_{\alpha}(0))$ term

- Warning: The fulle proof is very complicated and long
 - Builds on the ideas of [Shomrony and Heckel 2021], [Lenz et al 2020]
- Goal: By Fano's inequality, bounding $I(X^{LM}; Y^{LN})$ for any input distribution
- An *easy* converse

$$I(X^{LM}; Y^{LN}) \le \max_{P_X \in \mathcal{P}(\mathcal{X})} \sum_{d \in \mathbb{N}^+} \pi_{\alpha}(d) \cdot I(P_X, W^{\oplus d})$$

- Problem: Missing the $-\frac{1}{\beta}(1-\pi_{\alpha}(0))$ term
 - Does a decoder of an optimal system must know which molecules have been sampled after correct decoding?

- Warning: The fulle proof is very complicated and long
 - Builds on the ideas of [Shomrony and Heckel 2021], [Lenz et al 2020]
- Goal: By Fano's inequality, bounding $I(X^{LM}; Y^{LN})$ for any input distribution
- An *easy* converse

$$I(X^{LM}; Y^{LN}) \le \max_{P_X \in \mathcal{P}(\mathcal{X})} \sum_{d \in \mathbb{N}^+} \pi_{\alpha}(d) \cdot I(P_X, W^{\oplus d})$$

- Problem: Missing the $-\frac{1}{\beta}(1-\pi_{\alpha}(0))$ term
 - Does a decoder of an optimal system must know which molecules have been sampled after correct decoding?
 - Does a molecule must contain implicit information on its index?

• Challenge: Characterizing optimal distribution on molecules. Why?

- Challenge: Characterizing optimal distribution on molecules. Why?
- Illustration: M = 2

- Challenge: Characterizing optimal distribution on molecules. Why?
- Illustration: M = 2
 - Option 1: Identical molecules $X_1^L = X_2^L \stackrel{\text{IID}}{\sim} P_X$

- Challenge: Characterizing optimal distribution on molecules. Why?
- Illustration: M = 2
 - Option 1: Identical molecules $X_1^L = X_2^L \stackrel{\text{IID}}{\sim} P_X$
 - Low MI $I(P_X, W^{\oplus 2})$

- Challenge: Characterizing optimal distribution on molecules. Why?
- Illustration: M = 2
 - Option 1: Identical molecules $X_1^L = X_2^L \stackrel{\text{IID}}{\sim} P_X$
 - Low MI $I(P_X, W^{\oplus 2})$
 - Loss of order is immaterial

- Challenge: Characterizing optimal distribution on molecules. Why?
- Illustration: M = 2
 - Option 1: Identical molecules $X_1^L = X_2^L \stackrel{\text{IID}}{\sim} P_X$
 - Low MI $I(P_X, W^{\oplus 2})$
 - Loss of order is immaterial
 - Option 2: Independent molecules $X_1^L \stackrel{\text{IID}}{\sim} P_X \perp \perp X_2^L \stackrel{\text{IID}}{\sim} P_X$

- Challenge: Characterizing optimal distribution on molecules. Why?
- Illustration: M = 2
 - Option 1: Identical molecules $X_1^L = X_2^L \stackrel{\text{IID}}{\sim} P_X$
 - Low MI $I(P_X, W^{\oplus 2})$
 - Loss of order is immaterial
 - Option 2: Independent molecules $X_1^L \stackrel{\text{IID}}{\sim} P_X \perp \perp X_2^L \stackrel{\text{IID}}{\sim} P_X$
 - High MI $2I(P_X, W)$

- Challenge: Characterizing optimal distribution on molecules. Why?
- Illustration: M = 2
 - Option 1: Identical molecules $X_1^L = X_2^L \stackrel{\text{IID}}{\sim} P_X$
 - Low MI $I(P_X, W^{\oplus 2})$
 - Loss of order is immaterial
 - Option 2: Independent molecules $X_1^L \stackrel{\text{IID}}{\sim} P_X \perp \perp X_2^L \stackrel{\text{IID}}{\sim} P_X$
 - High MI $2I(P_X, W)$
 - Loss of order causes loss of $-\frac{1}{\beta}(1-\pi_{\alpha}(0))$

- Challenge: Characterizing optimal distribution on molecules. Why?
- Illustration: M = 2
 - Option 1: Identical molecules $X_1^L = X_2^L \stackrel{\text{IID}}{\sim} P_X$
 - Low MI $I(P_X, W^{\oplus 2})$
 - Loss of order is immaterial
 - Option 2: Independent molecules $X_1^L \stackrel{\text{IID}}{\sim} P_X \perp \perp X_2^L \stackrel{\text{IID}}{\sim} P_X$
 - High MI $2I(P_X, W)$
 - Loss of order causes loss of $-\frac{1}{\beta}(1-\pi_{\alpha}(0))$
- Optimal choice depends on β and W

- Challenge: Characterizing optimal distribution on molecules. Why?
- Illustration: M = 2
 - Option 1: Identical molecules $X_1^L = X_2^L \stackrel{\text{IID}}{\sim} P_X$
 - Low MI $I(P_X, W^{\oplus 2})$
 - Loss of order is immaterial
 - Option 2: Independent molecules $X_1^L \stackrel{\text{IID}}{\sim} P_X \perp \perp X_2^L \stackrel{\text{IID}}{\sim} P_X$
 - High MI $2I(P_X, W)$
 - Loss of order causes loss of $-\frac{1}{\beta}(1-\pi_{\alpha}(0))$
- Optimal choice depends on β and W
- In the regime where capacity is known, *independent* molecules are optimal

• Challenge: What are "similar" and "independent" molecules?

- Challenge: What are "similar" and "independent" molecules?
- In [Lenz et al 2020] for a BSC with crossover w:

- Challenge: What are "similar" and "independent" molecules?
- In [Lenz et al 2020] for a BSC with crossover w:
 - Molecules are different if $d_H(x_i^L, x_j^L) \ge 4wL$

- Challenge: What are "similar" and "independent" molecules?
- In [Lenz et al 2020] for a BSC with crossover w:
 - Molecules are different if $d_H(x_i^L, x_j^L) \ge 4wL$
- In our work: Soft similarity measure, based on conditional typical sets

- Challenge: What are "similar" and "independent" molecules?
- In [Lenz et al 2020] for a BSC with crossover w:
 - Molecules are different if $d_H(x_i^L, x_j^L) \ge 4wL$
- In our work: Soft similarity measure, based on conditional typical sets
 - The conditional typical set $\mathcal{T}_L([W] \mid x_0^L) \subset \mathcal{Y}^L$ has high probability when $Y^L \sim W^L(\cdot \mid x_0^L)$

- Challenge: What are "similar" and "independent" molecules?
- In [Lenz et al 2020] for a BSC with crossover w:
 - Molecules are different if $d_H(x_i^L, x_j^L) \ge 4wL$
- In our work: Soft similarity measure, based on conditional typical sets
 - The conditional typical set $\mathcal{T}_L([W] \mid x_0^L) \subset \mathcal{Y}^L$ has high probability when $Y^L \sim W^L(\cdot \mid x_0^L)$
 - x_1^L is "far" ("independent") from x_0^L if $\mathcal{T}_L([W] \mid x_0^L)$ has low probability when $Y^L \sim W^L(\cdot \mid x_1^L)$

- Challenge: What are "similar" and "independent" molecules?
- In [Lenz et al 2020] for a BSC with crossover w:
 - Molecules are different if $d_H(x_i^L, x_j^L) \ge 4wL$
- In our work: Soft similarity measure, based on conditional typical sets
 - The conditional typical set $\mathcal{T}_L([W] \mid x_0^L) \subset \mathcal{Y}^L$ has high probability when $Y^L \sim W^L(\cdot \mid x_0^L)$
 - x_1^L is "far" ("independent") from x_0^L if $\mathcal{T}_L([W] \mid x_0^L)$ has low probability when $Y^L \sim W^L(\cdot \mid x_1^L)$
 - The required distance is **sub-linear** in L

 \blacksquare Let a set of $\Theta(M)$ pairwise "far" molecules be input to a permuting DNA channel

- \blacksquare Let a set of $\Theta(M)$ pairwise "far" molecules be input to a permuting DNA channel
 - Establish that observing the input and output molecules gain information on the channel permutation

- \blacksquare Let a set of $\Theta(M)$ pairwise "far" molecules be input to a permuting DNA channel
 - Establish that observing the input and output molecules gain information on the channel permutation
 - The equivocation given input and output is negligible compared to unconditional entropy

- \blacksquare Let a set of $\Theta(M)$ pairwise "far" molecules be input to a permuting DNA channel
 - Establish that observing the input and output molecules gain information on the channel permutation
 - The equivocation given input and output is negligible compared to unconditional entropy
- 2 Let a pair of "close" molecules be given

- \blacksquare Let a set of $\Theta(M)$ pairwise "far" molecules be input to a permuting DNA channel
 - Establish that observing the input and output molecules gain information on the channel permutation
 - The equivocation given input and output is negligible compared to unconditional entropy
- **2** Let a pair of "close" molecules be given
 - Establish that the mutual information is essentially as if they are identical $I(P_X, V^{\oplus 2})$

• Upper bound the mutual information $I(X^{LM}; Y^{LM})$ for Fano's argument

- Upper bound the mutual information $I(X^{LM}; Y^{LM})$ for Fano's argument
 - Use a fixed composition codebook

- Upper bound the mutual information $I(X^{LM}; Y^{LM})$ for Fano's argument
 - Use a fixed composition codebook
 - A genie-aided decoder [Lenz et al 2019], that cluster output molecules to \tilde{Y}^{LM}

 \Rightarrow Establish an upper bound on $I(X^{LM}; \tilde{Y}^{LM})$

- Upper bound the mutual information $I(X^{LM}; Y^{LM})$ for Fano's argument
 - Use a fixed composition codebook
 - A genie-aided decoder [Lenz et al 2019], that cluster output molecules to \tilde{Y}^{LM}
 - \Rightarrow Establish an upper bound on $I(X^{LM}; \tilde{Y}^{LM})$
 - Condition of Q^{N+1} : A subset of the input molecules is pairwise "far", the other subset is a "close" neighbor in the first set

- Upper bound the mutual information $I(X^{LM}; Y^{LM})$ for Fano's argument
 - Use a fixed composition codebook
 - A genie-aided decoder [Lenz et al 2019], that cluster output molecules to \tilde{Y}^{LM}
 - \Rightarrow Establish an upper bound on $I(X^{LM}; \tilde{Y}^{LM})$
 - Condition of Q^{N+1} : A subset of the input molecules is pairwise "far", the other subset is a "close" neighbor in the first set
 - The tightest bound obtained for all pairwise "far" molecules

Proof outline – a clustering decoder

Figure: A clustering decoder
Proof outline – bounding mutual information

• Bound the average MI over Q^{N+1} via Poissonization

Proof outline – bounding mutual information

- Bound the average MI over Q^{N+1} via Poissonization
- "Single-letterization" is done in two stages (from ML to L and from L to 1)

Proof outline – bounding mutual information

- Bound the average MI over Q^{N+1} via Poissonization
- "Single-letterization" is done in two stages (from ML to L and from L to 1)
- Removing the fixed composition assumption

- Bound the average MI over Q^{N+1} via Poissonization
- "Single-letterization" is done in two stages (from ML to L and from L to 1)
- Removing the fixed composition assumption
- Obtaining a bound in which P_X is optimized once for all orders d

A prospective refinement of the upper bound

• Recall: The CID is defined with a pair of molecules $\mathsf{CID}(P_X,V) = 2 \cdot I(P_X,V) - I(P_X,V^{\oplus 2})$

A prospective refinement of the upper bound

- Recall: The CID is defined with a pair of molecules $\mathsf{CID}(P_X,V) = 2 \cdot I(P_X,V) I(P_X,V^{\oplus 2})$
- Idea: Generalize to a scattering measure for *triplets* of molecules

A prospective refinement of the upper bound

• Recall: The CID is defined with a pair of molecules

$$\mathsf{CID}(P_X, V) = 2 \cdot I(P_X, V) - I(P_X, V^{\oplus 2})$$

- Idea: Generalize to a scattering measure for *triplets* of molecules
- Why not quadruplets? quintuplets?

• Recall: The CID is defined with a pair of molecules

$$\mathsf{CID}(P_X, V) = 2 \cdot I(P_X, V) - I(P_X, V^{\oplus 2})$$

- Idea: Generalize to a scattering measure for *triplets* of molecules
- Why not quadruplets? quintuplets?
- The game is (most likely) not worth the (our) candle

• Recall: $\min_{x \in \mathcal{X}, y \in \mathcal{Y}} W(y \mid x) > 0$ is a qualifying condition for the converse

- Recall: $\min_{x \in \mathcal{X}, y \in \mathcal{Y}} W(y \mid x) > 0$ is a qualifying condition for the converse
- Technically: Originates from the use of the *blowing-up lemma* in the proof

- Recall: $\min_{x \in \mathcal{X}, y \in \mathcal{Y}} W(y \mid x) > 0$ is a qualifying condition for the converse
- Technically: Originates from the use of the *blowing-up lemma* in the proof
- Example: binary erasure sequencing channel

- Recall: $\min_{x \in \mathcal{X}, y \in \mathcal{Y}} W(y \mid x) > 0$ is a qualifying condition for the converse
- Technically: Originates from the use of the *blowing-up lemma* in the proof
- Example: binary erasure sequencing channel
- Fundamentally: If $W(y \mid x) = 0$ then molecule ordering is easier

- Recall: $\min_{x \in \mathcal{X}, y \in \mathcal{Y}} W(y \mid x) > 0$ is a qualifying condition for the converse
- Technically: Originates from the use of the *blowing-up lemma* in the proof
- Example: binary erasure sequencing channel
- Fundamentally: If $W(y \mid x) = 0$ then molecule ordering is easier
- Open problem: Not obvious if this is just a technical condition that can be removed

$$0 \leq I(A^K;B^K) - I(\tilde{A}^K;\tilde{B}^K) = O(\sqrt{K} \cdot \log K).$$

Let $P_A \in \mathcal{P}_K(\mathcal{A})$ be a type for length K. Also let $\mathcal{A}^K \sim P_A$ IID and $\tilde{\mathcal{A}}^K \sim Uniform[\mathcal{T}_K(P_A)]$, and let \mathcal{B}^K and $\tilde{\mathcal{B}}^K$ be their outputs over a DMC. Then

$$0 \leq I(A^K; B^K) - I(\tilde{A}^K; \tilde{B}^K) = O(\sqrt{K} \cdot \log K).$$

• Proof:

$$0 \leq I(A^K; B^K) - I(\tilde{A}^K; \tilde{B}^K) = O(\sqrt{K} \cdot \log K).$$

- Proof:
 - Bounding entropy differences via Ornstein's \overline{d} -distance [Polyanskiy and Wu 2016]

$$0 \leq I(A^K; B^K) - I(\tilde{A}^K; \tilde{B}^K) = O(\sqrt{K} \cdot \log K).$$

- Proof:
 - Bounding entropy differences via Ornstein's \overline{d} -distance [Polyanskiy and Wu 2016]
 - Bounding \overline{d} -distance by a KL divergence via Marton's transportation inequality [Marton 1996]

$$0 \leq I(A^K; B^K) - I(\tilde{A}^K; \tilde{B}^K) = O(\sqrt{K} \cdot \log K).$$

- Proof:
 - Bounding entropy differences via Ornstein's \overline{d} -distance [Polyanskiy and Wu 2016]
 - Bounding \overline{d} -distance by a KL divergence via Marton's transportation inequality [Marton 1996]
- A refined bound appears in [Tang and Polyanskiy 2022]

Outline

1 Introduction

- **2** Achievable bounds
- **3** A converse bound
- **4** Modulo additive channels

6 A simplified setting

Modulo-additive channels

Proposition

Let W be a modulo-additive channel, let $P_X^{(unif)}$ be the uniform distribution over \mathcal{X} . Then, for all

$$\beta \geq \frac{2}{\mathsf{CID}(P_X^{(\textit{unif})}, W)}$$

it holds that

$$C(\mathsf{DNA}) = \sum_{d \in \mathbb{N}^+} \pi_{\alpha}(d) \cdot I(P_X^{(unif)}, W^{\oplus d}) - \frac{1}{\beta} \left(1 - \pi_{\alpha}(0)\right).$$

Binary symmetric channels

• For a BSC with crossover probability w $\beta \ge \frac{2}{\log 2 - h_b \left(2w(1-w) \right)}.$

Binary symmetric channels

- For a BSC with crossover probability w $\beta \geq \frac{2}{\log 2 - h_b \left(2w(1-w) \right)}.$
- [Lenz et al 2019-2020]: Only for w < 1/8

$$\beta > \overline{\beta}_{\rm cr} := \frac{2}{\log 2 - h_b(4w)}$$

Binary symmetric channels – critical molecule length

Figure: Comparison between [Lenz 2019] and our result

Numerical computation

• Given input distribution P_X , all bounds can be accurately computed by convex optimization

Numerical computation

- Given input distribution P_X , all bounds can be accurately computed by convex optimization
- Example: Asymmetric channel $|\mathcal{X}| = |\mathcal{Y}| = 4$

$$W_0(y \mid x) = \frac{1}{100} \cdot \begin{bmatrix} 94 & 2 & 2 & 2\\ 2 & 70 & 25 & 3\\ 3 & 2 & 85 & 10\\ 10 & 5 & 5 & 80 \end{bmatrix}$$

Numerical computation

- Given input distribution P_X , all bounds can be accurately computed by convex optimization
- Example: Asymmetric channel $|\mathcal{X}| = |\mathcal{Y}| = 4$

$$W_0(y \mid x) = \frac{1}{100} \cdot \begin{bmatrix} 94 & 2 & 2 & 2\\ 2 & 70 & 25 & 3\\ 3 & 2 & 85 & 10\\ 10 & 5 & 5 & 80 \end{bmatrix}$$

• Uniform input distribution $P_X = (1/4, 1/4, 1/4, 1/4)$ (sub-optimal)

A numerical example – capacity

Figure: Upper and lower bounds on $C(\mathsf{DNA}(5,\beta,W_0))$ as a function of β (in nats).

A numerical example – reliability function

Figure: Right: Lower bound on the reliability function $E^*(R, \mathsf{DNA}(5, \beta, W_0), \{M\})$ as a function of R (in nats).

 \blacksquare Capacity is settled in the low-noise/high- β regime for any DMC W

- \blacksquare Capacity is settled in the low-noise/high- β regime for any DMC W
 - What is the capacity in the high-noise/low- β regime?

- \blacksquare Capacity is settled in the low-noise/high- β regime for any DMC W
 - What is the capacity in the high-noise/low- β regime?
 - Finite blocklength analysis? slow decay rates $O(\frac{1}{\log M})$ to limits

- \blacksquare Capacity is settled in the low-noise/high- β regime for any DMC W
 - What is the capacity in the high-noise/low- β regime?
 - Finite blocklength analysis? slow decay rates $O(\frac{1}{\log M})$ to limits

2 Error probability decays as $e^{-\Theta(M)}$ rather than $e^{-\Theta(ML)}$

- \blacksquare Capacity is settled in the low-noise/high- β regime for any DMC W
 - What is the capacity in the high-noise/low- β regime?
 - Finite blocklength analysis? slow decay rates $O(\frac{1}{\log M})$ to limits
- **2** Error probability decays as $e^{-\Theta(M)}$ rather than $e^{-\Theta(ML)}$
 - An outage behavior of the channel

- \blacksquare Capacity is settled in the low-noise/high- β regime for any DMC W
 - What is the capacity in the high-noise/low- β regime?
 - Finite blocklength analysis? slow decay rates $O(\frac{1}{\log M})$ to limits
- **2** Error probability decays as $e^{-\Theta(M)}$ rather than $e^{-\Theta(ML)}$
 - An outage behavior of the channel
 - Unlike for capacity, increasing α is not marginal in gain

- \blacksquare Capacity is settled in the low-noise/high- β regime for any DMC W
 - What is the capacity in the high-noise/low- β regime?
 - Finite blocklength analysis? slow decay rates $O(\frac{1}{\log M})$ to limits
- **2** Error probability decays as $e^{-\Theta(M)}$ rather than $e^{-\Theta(ML)}$
 - An outage behavior of the channel
 - Unlike for capacity, increasing α is not marginal in gain

- \blacksquare Capacity is settled in the low-noise/high- β regime for any DMC W
 - What is the capacity in the high-noise/low- β regime?
 - Finite blocklength analysis? slow decay rates $O(\frac{1}{\log M})$ to limits
- **2** Error probability decays as $e^{-\Theta(M)}$ rather than $e^{-\Theta(ML)}$
 - An outage behavior of the channel
 - Unlike for capacity, increasing α is not marginal in gain

N. Weinberger and N. Merhav,

"The DNA Storage Channel: Capacity and Error Probability Bounds," IT-T, May 2022
Conclusion and open problems

- \blacksquare Capacity is settled in the low-noise/high- β regime for any DMC W
 - What is the capacity in the high-noise/low- β regime?
 - Finite blocklength analysis? slow decay rates $O(\frac{1}{\log M})$ to limits
- **2** Error probability decays as $e^{-\Theta(M)}$ rather than $e^{-\Theta(ML)}$
 - An outage behavior of the channel
 - Unlike for capacity, increasing α is not marginal in gain

N. Weinberger and N. Merhav,

"The DNA Storage Channel: Capacity and Error Probability Bounds," IT-T, May 2022

Outline

1 Introduction

- **2** Achievable bounds
- **3** A converse bound
- **4** Modulo additive channels

6 A simplified setting

Previously:

1 The decoder has extremely high computational complexity ("optimal-like")

- 1 The decoder has extremely high computational complexity ("optimal-like")
 - The computation of the metric of a single codeword has complexity $\Theta(M^N)$

- 1 The decoder has extremely high computational complexity ("optimal-like")
 - The computation of the metric of a single codeword has complexity $\Theta(M^N)$
- **2** The sequencing channel $W^{(L)}$ is a DMC

- 1 The decoder has extremely high computational complexity ("optimal-like")
 - The computation of the metric of a single codeword has complexity $\Theta(M^N)$
- **2** The sequencing channel $W^{(L)}$ is a DMC
 - Practical channels also include deletions, insertions and so on

- 1 The decoder has extremely high computational complexity ("optimal-like")
 - The computation of the metric of a single codeword has complexity $\Theta(M^N)$
- **2** The sequencing channel $W^{(L)}$ is a DMC
 - Practical channels also include deletions, insertions and so on
- **3** Codeword length is ML but error probability decays as $e^{-\Theta(M)}$ rather than $e^{-\Theta(ML)}$ (DMC)

- 1 The decoder has extremely high computational complexity ("optimal-like")
 - The computation of the metric of a single codeword has complexity $\Theta(M^N)$
- **2** The sequencing channel $W^{(L)}$ is a DMC
 - Practical channels also include deletions, insertions and so on
- **3** Codeword length is ML but error probability decays as $e^{-\Theta(M)}$ rather than $e^{-\Theta(ML)}$ (DMC)
 - Improve by increasing coverage depth scaling

$$\alpha = \frac{N}{M} = \Theta(1) \to \alpha = \alpha_M = \Omega(1)$$

Previously:

- 1 The decoder has extremely high computational complexity ("optimal-like")
 - The computation of the metric of a single codeword has complexity $\Theta(M^N)$
- **2** The sequencing channel $W^{(L)}$ is a DMC
 - Practical channels also include deletions, insertions and so on
- **3** Codeword length is ML but error probability decays as $e^{-\Theta(M)}$ rather than $e^{-\Theta(ML)}$ (DMC)
 - Improve by increasing coverage depth scaling

$$\alpha = \frac{N}{M} = \Theta(1) \to \alpha = \alpha_M = \Omega(1)$$

4 Capacity increase due to multi-draws can be marginal

- 1 The decoder has extremely high computational complexity ("optimal-like")
 - The computation of the metric of a single codeword has complexity $\Theta(M^N)$
- **2** The sequencing channel $W^{(L)}$ is a DMC
 - Practical channels also include deletions, insertions and so on
- **3** Codeword length is ML but error probability decays as $e^{-\Theta(M)}$ rather than $e^{-\Theta(ML)}$ (DMC)
 - Improve by increasing coverage depth scaling

$$\alpha = \frac{N}{M} = \Theta(1) \to \alpha = \alpha_M = \Omega(1)$$

- **4** Capacity increase due to multi-draws can be marginal
 - Example: Let W be a BSC with crossover probability w=0.01

Previously:

- The decoder has extremely high computational complexity ("optimal-like")
 - The computation of the metric of a single codeword has complexity $\Theta(M^N)$
- **2** The sequencing channel $W^{(L)}$ is a DMC
 - Practical channels also include deletions, insertions and so on
- **3** Codeword length is ML but error probability decays as $e^{-\Theta(M)}$ rather than $e^{-\Theta(ML)}$ (DMC)
 - Improve by increasing coverage depth scaling

$$\alpha = \frac{N}{M} = \Theta(1) \to \alpha = \alpha_M = \Omega(1)$$

- **4** Capacity increase due to multi-draws can be marginal
 - Example: Let W be a BSC with crossover probability w=0.01
 - $C(W^{\oplus d}) = (0.91, 0.97, 0.99)$ for d = (1, 2, 3)

53/58

Previously:

- The decoder has extremely high computational complexity ("optimal-like")
 - The computation of the metric of a single codeword has complexity $\Theta(M^N)$
- **2** The sequencing channel $W^{(L)}$ is a DMC
 - Practical channels also include deletions, insertions and so on
- **3** Codeword length is ML but error probability decays as $e^{-\Theta(M)}$ rather than $e^{-\Theta(ML)}$ (DMC)
 - Improve by increasing coverage depth scaling

$$\alpha = \frac{N}{M} = \Theta(1) \to \alpha = \alpha_M = \Omega(1)$$

- **4** Capacity increase due to multi-draws can be marginal
 - Example: Let W be a BSC with crossover probability w=0.01
 - $C(W^{\oplus d}) = (0.91, 0.97, 0.99)$ for d = (1, 2, 3)

53/58

Previously:

- The decoder has extremely high computational complexity ("optimal-like")
 - The computation of the metric of a single codeword has complexity $\Theta(M^N)$
- **2** The sequencing channel $W^{(L)}$ is a DMC
 - Practical channels also include deletions, insertions and so on
- **3** Codeword length is ML but error probability decays as $e^{-\Theta(M)}$ rather than $e^{-\Theta(ML)}$ (DMC)
 - Improve by increasing coverage depth scaling

$$\alpha = \frac{N}{M} = \Theta(1) \to \alpha = \alpha_M = \Omega(1)$$

- **4** Capacity increase due to multi-draws can be marginal
 - Example: Let W be a BSC with crossover probability w=0.01
 - $C(W^{\oplus d}) = (0.91, 0.97, 0.99)$ for d = (1, 2, 3)

53/58

• Encoder: A *coded-index* scheme

- Encoder: A *coded-index* scheme
 - An inner code $\mathcal{B}^{(L)} \subset \mathcal{X}^L$ is partitioned to M sub-codes $\{\mathcal{B}^{(L)}_m\}_{m \in [M]}$

- Encoder: A *coded-index* scheme
 - An inner code $\mathcal{B}^{(L)} \subset \mathcal{X}^L$ is partitioned to M sub-codes $\{\mathcal{B}^{(L)}_m\}_{m \in [M]}$
 - An outer-code encodes a message to a sequence x^{LM} where $x_m^L \in \mathcal{B}_m^{(L)}$

- Encoder: A *coded-index* scheme
 - An inner code $\mathcal{B}^{(L)} \subset \mathcal{X}^L$ is partitioned to M sub-codes $\{\mathcal{B}^{(L)}_m\}_{m \in [M]}$
 - An outer-code encodes a message to a sequence x^{LM} where $x_m^L \in \mathcal{B}_m^{(L)}$
- Decoder:

- Encoder: A *coded-index* scheme
 - An inner code $\mathcal{B}^{(L)} \subset \mathcal{X}^L$ is partitioned to M sub-codes $\{\mathcal{B}^{(L)}_m\}_{m \in [M]}$
 - An outer-code encodes a message to a sequence x^{LM} where $x_m^L \in \mathcal{B}_m^{(L)}$
- Decoder:
 - Inner code decoding: Each output molecule y_n^L is decoded to a codeword in $\mathcal{B}^{(L)}$

- Encoder: A *coded-index* scheme
 - An inner code $\mathcal{B}^{(L)} \subset \mathcal{X}^L$ is partitioned to M sub-codes $\{\mathcal{B}^{(L)}_m\}_{m \in [M]}$
 - An outer-code encodes a message to a sequence x^{LM} where $x_m^L \in \mathcal{B}_m^{(L)}$
- Decoder:
 - Inner code decoding: Each output molecule y_n^L is decoded to a codeword in $\mathcal{B}^{(L)}$
 - An erasure is declared if there is no consensus on x_m^L

- Encoder: A *coded-index* scheme
 - An inner code $\mathcal{B}^{(L)} \subset \mathcal{X}^L$ is partitioned to M sub-codes $\{\mathcal{B}^{(L)}_m\}_{m \in [M]}$
 - An outer-code encodes a message to a sequence x^{LM} where $x_m^L \in \mathcal{B}_m^{(L)}$
- Decoder:
 - Inner code decoding: Each output molecule y_n^L is decoded to a codeword in $\mathcal{B}^{(L)}$
 - An erasure is declared if there is no consensus on x_m^L
 - Note: No (substantial) gain from multi-draws

- Encoder: A *coded-index* scheme
 - An inner code $\mathcal{B}^{(L)} \subset \mathcal{X}^L$ is partitioned to M sub-codes $\{\mathcal{B}^{(L)}_m\}_{m \in [M]}$
 - An outer-code encodes a message to a sequence x^{LM} where $x_m^L \in \mathcal{B}_m^{(L)}$
- Decoder:
 - Inner code decoding: Each output molecule y_n^L is decoded to a codeword in $\mathcal{B}^{(L)}$
 - An erasure is declared if there is no consensus on x_m^L
 - Note: No (substantial) gain from multi-draws
- Outer code decoding

• A "black-box" inner code

• A "black-box" inner code 1 Inner code rate: $R_b = \frac{1}{L} \log |\mathcal{B}^{(L)}| > 1/\beta$.

- A "black-box" inner code
 - 1 Inner code rate: $R_b = \frac{1}{L} \log |\mathcal{B}^{(L)}| > 1/\beta.$
 - 2 Vanishing inner code error probability: pe_b(B^(L)) = e^{-Θ(L^ζ)} where ζ > 0.

- A "black-box" inner code
 - 1 Inner code rate: $R_b = \frac{1}{L} \log |\mathcal{B}^{(L)}| > 1/\beta.$
 - 2 Vanishing inner code error probability: $\mathsf{pe}_b(\mathcal{B}^{(L)}) = e^{-\Theta(L^{\zeta})}$ where $\zeta > 0$.
- A random outer code

Theorem

Theorem

• If
$$N/M = \Theta(1)$$
 then

$$\liminf_{M \to \infty} -\frac{1}{M} \log \mathsf{pe}(\mathcal{C}_M, \mathsf{D}_M) \ge d_b \left(1 - \frac{R}{R_b - 1/\beta} \left\| e^{-\frac{N}{M}} \right)$$
for any $R < (R_b - 1/\beta)(1 - e^{-\frac{N}{M}})$.

Theorem

• If
$$N/M = \Theta(1)$$
 then

$$\begin{split} \lim_{M \to \infty} \inf_{M \to \infty} -\frac{1}{M} \log \mathsf{pe}(\mathcal{C}_{M}, \mathsf{D}_{M}) &\geq d_{b} \left(1 - \frac{R}{R_{b} - 1/\beta} \left\| e^{-\frac{N}{M}} \right) \right) \\ \text{for any } R &< (R_{b} - 1/\beta)(1 - e^{-\frac{N}{M}}). \end{split}$$
• If $N/M = \omega(1)$ then

$$\begin{split} \lim_{N \to \infty} \inf_{M \to \infty} -\frac{1}{N} \log \mathsf{pe}(\mathcal{C}_{M}, \mathsf{D}_{M}) \\ &\geq \begin{cases} \frac{1}{2} \left[1 - \frac{R}{R_{b} - 1/\beta} \right], & \frac{N}{ML} < 2(R_{b} - 1/\beta) \\ \frac{ML}{N} \left[R_{b} - 1/\beta - R \right], & 2(R_{b} - 1/\beta) \leq \frac{N}{ML} < 4(R_{b} - 1/\beta) \\ \frac{1}{4} \left[1 - \frac{R}{R_{b} - 1/\beta} \right], & \frac{N}{ML} > 4(R_{b} - 1/\beta) \end{cases} \\ \text{for any } R < R_{b} - 1/\beta. \end{split}$$

Theorem

• If
$$N/M = \Theta(1)$$
 then

$$\begin{split} \lim_{M \to \infty} &-\frac{1}{M} \log \mathsf{pe}(\mathcal{C}_M, \mathsf{D}_M) \ge d_b \left(1 - \frac{R}{R_b - 1/\beta} \left\| e^{-\frac{N}{M}} \right) \right) \\ \text{for any } R < (R_b - 1/\beta)(1 - e^{-\frac{N}{M}}). \end{split}$$
• If $N/M = \omega(1)$ then

$$\begin{split} \lim_{N \to \infty} &-\frac{1}{N} \log \mathsf{pe}(\mathcal{C}_M, \mathsf{D}_M) \\ \ge & \begin{cases} \frac{1}{2} \left[1 - \frac{R}{R_b - 1/\beta} \right], & \frac{N}{ML} < 2(R_b - 1/\beta) \\ \frac{ML}{N} \left[R_b - 1/\beta - R \right], & 2(R_b - 1/\beta) \le \frac{N}{ML} < 4(R_b - 1/\beta) \\ \frac{1}{4} \left[1 - \frac{R}{R_b - 1/\beta} \right], & \frac{N}{ML} > 4(R_b - 1/\beta) \end{cases}$$

for any $R < R_b - 1/\beta$.

 \bullet Based on random coding and expurgated analysis $_{^{56/58}}$

 \blacksquare A phase transition between $N=\Theta(M)$ and $N=\omega(M)$

A phase transition between N = Θ(M) and N = ω(M)
 2 Expurgation improves in the regime ^N/_{ML} > 4(R_b - 1/β)

A phase transition between N = Θ(M) and N = ω(M)
 Expurgation improves in the regime ^N/_{ML} > 4(R_b - 1/β)
 A slow decrease O(¹/_{logM}) to the asymptotic scaling

- **1** A phase transition between $N = \Theta(M)$ and $N = \omega(M)$
- 2 Expurgation improves in the regime $\frac{N}{ML} > 4(R_b 1/\beta)$
- **8** A slow decrease $O(\frac{1}{\log M})$ to the asymptotic scaling
- **4** Establishing tightness of the bound seems challenging

- **1** A phase transition between $N = \Theta(M)$ and $N = \omega(M)$
- 2 Expurgation improves in the regime $\frac{N}{ML} > 4(R_b 1/\beta)$
- **8** A slow decrease $O(\frac{1}{\log M})$ to the asymptotic scaling
- **4** Establishing tightness of the bound seems challenging
 - Poissonization is used in the proof tight for expectations but not for tails

Conclusion

• A simplified analysis of a DNA storage scheme

Conclusion

- A simplified analysis of a DNA storage scheme
 - Towards practical encoding/decoding methods
- A simplified analysis of a DNA storage scheme
 - Towards practical encoding/decoding methods
- Error probability decays as $e^{-\Theta(N)}$

- A simplified analysis of a DNA storage scheme
 - Towards practical encoding/decoding methods
- Error probability decays as $e^{-\Theta(N)}$
 - Increasing coverage depth is vital for improving error probability scaling

- A simplified analysis of a DNA storage scheme
 - Towards practical encoding/decoding methods
- Error probability decays as $e^{-\Theta(N)}$
 - Increasing coverage depth is vital for improving error probability scaling

- A simplified analysis of a DNA storage scheme
 - Towards practical encoding/decoding methods
- Error probability decays as $e^{-\Theta(N)}$
 - Increasing coverage depth is vital for improving error probability scaling

N. Weinberger

"Error Probability Bounds for Coded-Index DNA Storage Systems," IT-T, November 2022

- A simplified analysis of a DNA storage scheme
 - Towards practical encoding/decoding methods
- Error probability decays as $e^{-\Theta(N)}$
 - Increasing coverage depth is vital for improving error probability scaling

N. Weinberger

"Error Probability Bounds for Coded-Index DNA Storage Systems," IT-T, November 2022

Thank You !