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DNA storage

• Why store information in DNA strands?

• Enormous information density: 5 grams can store 8 ·1021

bits
• Extreme longevity: Messages from mammoths...

• Working prototypes starting from 2012, world record
∼ 200MB [Organick et al 2018]
• Still costly: ∼ $500 per 1MB of data
• Check out: “Information-Theoretic Foundations of DNA
Data Storage” [Shomorony and Heckel, FnT, 2022]
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The DNA storage channel model – writing/encoder

• Alphabet X , in real-life X = {A,C,G,T}

• A DNA molecule is a sequence xL ∈ XL (order matters)
• A codeword is a multiset of M molecules (no order)

xLM = (xL0 , . . .xLM−1)

• A codebook is a set of different codewords C = {xLM (j)}
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The DNA storage channel model – reading

• Channel output is a multiset of N molecules (order does
not matter)

Y LN = (Y L
0 , . . . ,Y

L
N−1)

• Output molecule Y L
n is generated as:

1 Sample one of the M molecules of xLM , independently,
with replacement

2 Sequencing xL to obtain Y Ln – Modeled as a DMC

W
(
yLn | xL

)
=
∏
i∈[L]

W (yi | xi)
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The DNA storage channel model – decoding

• The decoder is a mapping (YL)N → [|C|]

• Equivalently, a set of the decision regions D = {D(j)}j∈[|C|]

• D(j) is the decision region of the jth codeword

D(j) := {yLN : D(yLN ) = j}
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The DNA storage channel model – channel

Figure: DNA storage model (Courtesy of Shomrony and Heckel)
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The DNA storage channel model – parameters

• DNA := (α,β,W ) is a sequence indexed by the number of
molecules M

• Coverage depth parameter α := N
M

• Molecule length scaling: β := L
logM > 1

• DMC sequencing channel W
• Coding rate

R= log |C|
LM

• Problem: What is the Shannon capacity of DNA?

8/58



The DNA storage channel model – parameters

• DNA := (α,β,W ) is a sequence indexed by the number of
molecules M
• Coverage depth parameter α := N

M

• Molecule length scaling: β := L
logM > 1

• DMC sequencing channel W
• Coding rate

R= log |C|
LM

• Problem: What is the Shannon capacity of DNA?

8/58



The DNA storage channel model – parameters

• DNA := (α,β,W ) is a sequence indexed by the number of
molecules M
• Coverage depth parameter α := N

M

• Molecule length scaling: β := L
logM > 1

• DMC sequencing channel W
• Coding rate

R= log |C|
LM

• Problem: What is the Shannon capacity of DNA?

8/58



The DNA storage channel model – parameters

• DNA := (α,β,W ) is a sequence indexed by the number of
molecules M
• Coverage depth parameter α := N

M

• Molecule length scaling: β := L
logM > 1

• DMC sequencing channel W

• Coding rate
R= log |C|

LM

• Problem: What is the Shannon capacity of DNA?

8/58



The DNA storage channel model – parameters

• DNA := (α,β,W ) is a sequence indexed by the number of
molecules M
• Coverage depth parameter α := N

M

• Molecule length scaling: β := L
logM > 1

• DMC sequencing channel W
• Coding rate

R= log |C|
LM

• Problem: What is the Shannon capacity of DNA?

8/58



The DNA storage channel model – parameters

• DNA := (α,β,W ) is a sequence indexed by the number of
molecules M
• Coverage depth parameter α := N

M

• Molecule length scaling: β := L
logM > 1

• DMC sequencing channel W
• Coding rate

R= log |C|
LM

• Problem: What is the Shannon capacity of DNA?

8/58



Previous works

• Initial ideas: [MacKay, Sayer, and Goldman 2015], [Heckel,
Shomorony, Ramchandran and Tse, 2017]

• Coding-theoretic papers: [Kovacevic and Tan 2018], [Lenz
et al 2019], [Sima, Raviv and Bruck 2021], [Song, Cai, and
Immink 2020] [Tang and Farnoud 2021]
• The foundations of our work:

• The model, first capacity results, basic ideas [Shomorony
and Heckel, 2021]

• Refinement to a multinomial model [Lenz, Siegel,
Wachter-Zeh, Yaakobi, 2019-2020]

• Both works only for W = BSC(w) (essentially)

9/58



Previous works

• Initial ideas: [MacKay, Sayer, and Goldman 2015], [Heckel,
Shomorony, Ramchandran and Tse, 2017]
• Coding-theoretic papers: [Kovacevic and Tan 2018], [Lenz
et al 2019], [Sima, Raviv and Bruck 2021], [Song, Cai, and
Immink 2020] [Tang and Farnoud 2021]

• The foundations of our work:

• The model, first capacity results, basic ideas [Shomorony
and Heckel, 2021]

• Refinement to a multinomial model [Lenz, Siegel,
Wachter-Zeh, Yaakobi, 2019-2020]

• Both works only for W = BSC(w) (essentially)

9/58



Previous works

• Initial ideas: [MacKay, Sayer, and Goldman 2015], [Heckel,
Shomorony, Ramchandran and Tse, 2017]
• Coding-theoretic papers: [Kovacevic and Tan 2018], [Lenz
et al 2019], [Sima, Raviv and Bruck 2021], [Song, Cai, and
Immink 2020] [Tang and Farnoud 2021]
• The foundations of our work:

• The model, first capacity results, basic ideas [Shomorony
and Heckel, 2021]

• Refinement to a multinomial model [Lenz, Siegel,
Wachter-Zeh, Yaakobi, 2019-2020]

• Both works only for W = BSC(w) (essentially)

9/58



Previous works

• Initial ideas: [MacKay, Sayer, and Goldman 2015], [Heckel,
Shomorony, Ramchandran and Tse, 2017]
• Coding-theoretic papers: [Kovacevic and Tan 2018], [Lenz
et al 2019], [Sima, Raviv and Bruck 2021], [Song, Cai, and
Immink 2020] [Tang and Farnoud 2021]
• The foundations of our work:

• The model, first capacity results, basic ideas [Shomorony
and Heckel, 2021]

• Refinement to a multinomial model [Lenz, Siegel,
Wachter-Zeh, Yaakobi, 2019-2020]

• Both works only for W = BSC(w) (essentially)

9/58



Previous works

• Initial ideas: [MacKay, Sayer, and Goldman 2015], [Heckel,
Shomorony, Ramchandran and Tse, 2017]
• Coding-theoretic papers: [Kovacevic and Tan 2018], [Lenz
et al 2019], [Sima, Raviv and Bruck 2021], [Song, Cai, and
Immink 2020] [Tang and Farnoud 2021]
• The foundations of our work:

• The model, first capacity results, basic ideas [Shomorony
and Heckel, 2021]

• Refinement to a multinomial model [Lenz, Siegel,
Wachter-Zeh, Yaakobi, 2019-2020]

• Both works only for W = BSC(w) (essentially)

9/58



Previous works

• Initial ideas: [MacKay, Sayer, and Goldman 2015], [Heckel,
Shomorony, Ramchandran and Tse, 2017]
• Coding-theoretic papers: [Kovacevic and Tan 2018], [Lenz
et al 2019], [Sima, Raviv and Bruck 2021], [Song, Cai, and
Immink 2020] [Tang and Farnoud 2021]
• The foundations of our work:

• The model, first capacity results, basic ideas [Shomorony
and Heckel, 2021]

• Refinement to a multinomial model [Lenz, Siegel,
Wachter-Zeh, Yaakobi, 2019-2020]

• Both works only for W = BSC(w) (essentially)

9/58



Outline

1 Introduction

2 Achievable bounds

3 A converse bound

4 Modulo additive channels

5 A simplified setting

10/58



Our strategy

• Error probability analysis of

1 Encoder: Standard random coding ensemble
2 Decoder: High complexity, “optimal-like”

• Result:

1 A bound on the reliability function
2 Capacity bound is the vanishing point of the reliability

function bound
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The binomial channel

• The d-order binomial extension of a DMC: V : A→B is the
DMC

V ⊕d[bd | a] =
d−1∏
i=0

V (bi | a)

for a ∈ A, bd ∈ Bd

• Interpretation: “d independent observations on an input
symbol a ∈ A over V ”
• Notation:

• I(PX ,V ) is the mutual information of a DMC V with input
distribution PX

• πα(d) is the Poisson PMF with parameter α
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Capacity lower bound (achievable)

Theorem
The capacity of the DNA channel is lower bounded as

C(DNA)≥ max
PX∈P(X )

∑
d∈N+

πα(d) · I(PX ,W⊕d)−
1
β

(1−πα(0)) .

• Improves best known results: No constraints on α,β,W !
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Interpretation

max
PX∈P(X )

∑
d∈N+

πα(d) · I(PX ,W⊕d)−
1
β

(1−πα(0))

• The relative number of molecules sampled d times

• The multinomial distribution is “Poissonized”
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Interpretation

max
PX∈P(X )

∑
d∈N+

πα(d) · I(PX ,W⊕d)−
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β
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• The mutual information of a molecule sampled d times

• The MI is that of d-order binomial channel W⊕d

14/58



Interpretation

max
PX∈P(X )

∑
d∈N+

πα(d) · I(PX ,W⊕d)−
1
β

(1−πα(0))

• The mutual information of a molecule sampled d times
• The MI is that of d-order binomial channel W⊕d

14/58



Interpretation

max
PX∈P(X )

∑
d∈N+

πα(d) · I(PX ,W⊕d)−
1
β

(1−πα(0))

• A loss term due to the lack of molecule order

• The cost of (implicit) “indexing”

14/58



Interpretation

max
PX∈P(X )

∑
d∈N+

πα(d) · I(PX ,W⊕d)−
1
β

(1−πα(0))

• A loss term due to the lack of molecule order
• The cost of (implicit) “indexing”

14/58



Interpretation

max
PX∈P(X )

∑
d∈N+

πα(d) · I(PX ,W⊕d)−
1
β

(1−πα(0))

• Optimal input distribution should compromise all orders
W⊕d
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A digression – symmetric channels

Motivation: When is the capacity lower bound achieving input
distribution P ∗X is uniform?
• Identify a DMC V : A→B with its probability transition
matrix (|A| rows, |B| columns)

• Notation: V|B0 is a |A| rows, |B0| columns submatrix
• Symmetric channels

• A DMC V is symmetric if its rows are permutations of
each other and so are the columns [Cover and Thomas]

• For example: A modulo-additive channel B =A⊕C

• A DMC V is weakly symmetric if its rows are
permutations and the columns have equal sums [Cover and
Thomas]

• A DMC V is symmetric in Gallager’s sense if there
exists a partition B =

⋃
iBi such that V|Bi is a symmetric

DMC for all i

• In all these cases P ∗X for V is uniform
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A digression – binomial extension symmetric channels
• Back to the DNA channel: We need to maximize∑

d∈N+ πα(d) · I(PX ,W⊕d)

• Problem: If W is symmetric then W⊕d is not necessarily
symmetric (not even in Gallager’s sense)
• Example:

W1 = 1
15 ·


1 2 3 4 5
4 3 2 5 1
2 5 1 3 4
3 4 5 1 2
5 1 4 2 3


but W⊕2

1 is not symmetric

• The capacity achieving input distribution is not uniform

Proposition
Let V : A→B be a modulo-additive DMC. Then V ⊕d is
symmetric in Gallager’s sense for all d ∈ N+.
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Capacity lower bound (achievable) – input distribution

• Also: The counterexample had |A|= |B|= 5, but |X |= 4
for practical DNA channels

Proposition
If |X | ≤ 4, |Y| ≤ |X |, and W is a symmetric channel in
Gallager’s sense, then the lower bound on the capacity is
achieved by the uniform input distribution.

• Proof:

• A detailed inspection of all possible channels of |X | ≤ 4,
|Y| ≤ |X |

• A taxonomy of small doubly-permutation atoms

• Open questions:

• When does operations such as binomial extension preserve
symmetry?

• How can this systematically be proven?
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Error probability bound – basic definitions

• θd represents the fraction of molecules sampled d ∈ N+
times θd ≥ 0,

∑
d∈N

θd = 1



• Denote

R({θd}) :=
∑
d∈N

θd · I(PX ,W⊕d)−
1
β

(1−θ0)

• Can be interpreted as “instantaneous capacity”
• Note: This is a notation only

• dKL(p || q) is the binary KL divergence
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Reliability function bound

Theorem
It holds that

liminf
M→∞

− 1
M

logpe(C,D)≥

max
PX∈P(X )

inf
{θd}d∈N

∑
d∈N

1−
∑
i∈[d]

θi

·dKL

(
θd

1−
∑
i∈[d] θi

∣∣∣∣∣
∣∣∣∣∣ πα(d)
1−

∑
i∈[d]πα(i)

)

where the infimum is subject to

R({θd})≤R.

• The exponent vanishes when θd = πα(d) for all d ∈ N+
• ⇒ Capacity lower bound follows as a corollary

C(DNA)≥R({πα(d)}).
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Interpretation

• The exponent is dominated by outage R({θd})≤R

• Outage is caused by under-sampled molecules
• Error probability decays as e−Θ(M) and not
e−Θ(ML) = e−Θ(M logM)!
• Proof:

1 Standard IID random coding ensemble
2 High complexity, “optimal-like”, decoder
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Comparison to previous schemes

• Very different!

• Encoder:

• No explicit indexing of molecules
• No inner/outer code

• Decoder:

• No greedy clustering as in [Lenz et al 2019]

• Clustering requires defining a metric – suitable to
BSC/symmetric channels

• Hard clustering is the source of limited regime of (α,β,W )

• Bonus: The decoder is universal w.r.t. W
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Proof snippets – sampling types
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Figure: Sampling types
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Proof snippets – sampling types
• A new notion of sampling types:

• UN is the molecule index vector – Un is the molecule
sampled at the nth draw

• SM is the molecule duplicate vector – Sm is the number of
times the mth molecule was sampled

• QN+1 is the amplification vector – Qd is the number of
molecules sampled d times

• Related via the empirical count operator N

QN+1 = N (SM ) = N (2)(UN )

• The analysis requires estimating asymptotic sizes of
sampling type classes, e.g.

T
(2)
qN+1 =

{
uN ∈ [M ]N : N (2)(uN ) = qN+1

}
• Estimation via restricted partition numbers [Hardy and
Ramanujan, Uspensky, and Rademacher]
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Proof snippets – channel model

• For all UN with a given qN+1 amplification vector, the
channel operation is “equivalent”

• A mixture (over orders d) of binomial channels W⊕d, with
mixing coefficients qd

M

L
[
yLN | xLM

]
=

∑
qN+1∈Q(M,N)

P
[
UN ∈T

(2)
qN+1

]

×
∑

uN∈T
(2)
qN+1

1
|T (2)

qN+1 |

N∏
d=0

W⊕d
[
bdKd(uN ) | aKd(uN )

]
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Proof snippets – decoder

• The decoder is based on a metric (score)

x̂ML := argmax
xLM∈C

λ(Y LN | xLM )

• Recall: Molecule Un was sampled at time n ∈ [N ]. A
sampling vector is UN ∈ [M ]N

• The metric is a maximization over all sampling events

λ(yLN | xLM ) = max
uN

λ(Y NL,xML;uN )
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Proof snippets – decoder

• The conditional score:

λ(yLN | xLM ;uN ) :=−(1−θ0)M logM

+
∑

d∈[N+1]
θdL·

[
D(P̂ d(xLM ;uN ) || PX) + IP̂ d(xLM ,yLN ;uN )(A;Bd)

]

1 Based on the empirical mutual information (MMI)

• Does not depend on the channel W (universal)

2 Adapted for the IID ensemble using a KL divergence term

• Fixed-composition codewords is problematic:

• A full codeword may have fixed composition, but not each
molecule

• Fixed-composition molecules is too restrictive

3 A correction term: Not all sampling events have the same
probability (“sampling types”)

• Inspired by the analysis of [Csiszár 1980] for joint
source-channel coding
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Proof snippets – error probability analysis

• Condition on a given amplification vector QN+1 = qN+1

• Random coding analysis of the error probability of the
universal decoder

• Method of types (on steroids...)
• An obstacle:

• The order d ∈ [N + 1] is unbounded as N increases
• The maximal output alphabet size of {V ⊕d}d∈[N ] increases

with blocklength!

• Solution: A careful truncation argument

• Assuming qd = 0 for all d≥ d
• d is optimized later on
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Proof snippets – error probability analysis
• The conditional analysis shows that if

R≤ Γd(q
N+1) :=

∑
d∈[d+1]

qd
M
· I(PX ,W⊕d)−

1
β

(
1− q0

M

)

then the conditional error probability decays as e−Θ(ML)

• It holds
P[Γd(Q

N+1)<R] = e−Θ(M)

• Hence

pe(C,D)≤ P[Γd(Q
N+1)≥R] ·e−Θ(ML) +P[Γd(Q

N+1)<R] ·1.
A “bad” sampling event dominates the error
probability!
• Evaluation of P[Γd(Q

N+1)<R]:

• The vector QN+1 is the empirical count of a multinomial
SM

• The multinomial distribution is Poissonized

• Typically for expectations, here for tails
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Error exponent for fixed uniform sampling

• Suppose that each molecule is equally sampled
Sm = α= N

M for all m ∈ [M ]

Theorem
Assume the ideal sampling of Sm = α for all m ∈ [M ] with
probability 1. Then,

liminf
M→∞

− 1
ML

logpe(C,D)

≥ max
PX∈P(X )

min
QXY α∈P(X×Yα)

D(QX || PX) +D(QY α|X ||W⊕α|QX)

+
[
D(QA || PX) + IQ(X;Y α)− 1

β
−R

]
+
.

• Despite loss of order, the error probability decays as
e−Θ(ML) = e−Θ(M logM)!
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Outline

1 Introduction

2 Achievable bounds

3 A converse bound

4 Modulo additive channels

5 A simplified setting
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Capacity upper bound (converse) – definitions

• The common-input MI deficit

CID(PX ,V ) = 2 · I(PX ,V )− I(PX ,V ⊕2)

• Intuitively: The difference in mutual information for two
independent inputs vs. identical inputs

• The d-order excess-rate term by

Ωd(β,PX ,W ) :=
[
min

{ 1
β
,

2
β
−CID(PX ,W⊕d)

}]
+
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Capacity upper bound (converse)

Theorem
Assume that minx∈X , y∈YW (y | x)> 0. Then, the capacity of the
DNA channel is upper bounded as

C(DNA)≤ max
PX∈P(X )

∑
d∈N+

πα(d) ·
[
I(PX ,W⊕d) + Ωd(β,PX ,W )

]
− 1

β (1−πα(0)) .

• Similar to the lower bound, except for Ωd(·)
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Tightness of the bound

Corollary
Let

P ∗X(α,β,W )∈ argmax
PX∈P(X )

∑
d∈N+

πα(d)·
[
I(PX ,W⊕d) + Ωd(β,PX ,W )

]
,

and let

βcr(α,W ) := min
{
β : β ≥ 2

CID(P ∗X(α,β,W ),W )

}

Then, for all β ≥ βcr(α,W )

C(DNA) =
∑
d∈N+

πα(d) ·I
(
P ∗X(α,βcr(α,W ),W ),W⊕d)

)
− 1
β

(1−πα(0)) .
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Proof idea

• Warning: The fulle proof is very complicated and long

• Builds on the ideas of [Shomrony and Heckel 2021], [Lenz et
al 2020]

• Goal: By Fano’s inequality, bounding I(XLM ;Y LN ) for
any input distribution
• An easy converse

I(XLM ;Y LN )≤ max
PX∈P(X )

∑
d∈N+

πα(d) · I(PX ,W⊕d)

• Problem: Missing the − 1
β (1−πα(0)) term

• Does a decoder of an optimal system must know which
molecules have been sampled after correct decoding?

• Does a molecule must contain implicit information on its
index?

34/58



Proof idea

• Warning: The fulle proof is very complicated and long
• Builds on the ideas of [Shomrony and Heckel 2021], [Lenz et

al 2020]

• Goal: By Fano’s inequality, bounding I(XLM ;Y LN ) for
any input distribution
• An easy converse

I(XLM ;Y LN )≤ max
PX∈P(X )

∑
d∈N+

πα(d) · I(PX ,W⊕d)

• Problem: Missing the − 1
β (1−πα(0)) term

• Does a decoder of an optimal system must know which
molecules have been sampled after correct decoding?

• Does a molecule must contain implicit information on its
index?

34/58



Proof idea

• Warning: The fulle proof is very complicated and long
• Builds on the ideas of [Shomrony and Heckel 2021], [Lenz et

al 2020]
• Goal: By Fano’s inequality, bounding I(XLM ;Y LN ) for
any input distribution

• An easy converse

I(XLM ;Y LN )≤ max
PX∈P(X )

∑
d∈N+

πα(d) · I(PX ,W⊕d)

• Problem: Missing the − 1
β (1−πα(0)) term

• Does a decoder of an optimal system must know which
molecules have been sampled after correct decoding?

• Does a molecule must contain implicit information on its
index?

34/58



Proof idea

• Warning: The fulle proof is very complicated and long
• Builds on the ideas of [Shomrony and Heckel 2021], [Lenz et

al 2020]
• Goal: By Fano’s inequality, bounding I(XLM ;Y LN ) for
any input distribution
• An easy converse

I(XLM ;Y LN )≤ max
PX∈P(X )

∑
d∈N+

πα(d) · I(PX ,W⊕d)

• Problem: Missing the − 1
β (1−πα(0)) term

• Does a decoder of an optimal system must know which
molecules have been sampled after correct decoding?

• Does a molecule must contain implicit information on its
index?

34/58



Proof idea

• Warning: The fulle proof is very complicated and long
• Builds on the ideas of [Shomrony and Heckel 2021], [Lenz et

al 2020]
• Goal: By Fano’s inequality, bounding I(XLM ;Y LN ) for
any input distribution
• An easy converse

I(XLM ;Y LN )≤ max
PX∈P(X )

∑
d∈N+

πα(d) · I(PX ,W⊕d)

• Problem: Missing the − 1
β (1−πα(0)) term

• Does a decoder of an optimal system must know which
molecules have been sampled after correct decoding?

• Does a molecule must contain implicit information on its
index?

34/58



Proof idea

• Warning: The fulle proof is very complicated and long
• Builds on the ideas of [Shomrony and Heckel 2021], [Lenz et

al 2020]
• Goal: By Fano’s inequality, bounding I(XLM ;Y LN ) for
any input distribution
• An easy converse

I(XLM ;Y LN )≤ max
PX∈P(X )

∑
d∈N+

πα(d) · I(PX ,W⊕d)

• Problem: Missing the − 1
β (1−πα(0)) term

• Does a decoder of an optimal system must know which
molecules have been sampled after correct decoding?

• Does a molecule must contain implicit information on its
index?

34/58



Proof idea

• Warning: The fulle proof is very complicated and long
• Builds on the ideas of [Shomrony and Heckel 2021], [Lenz et

al 2020]
• Goal: By Fano’s inequality, bounding I(XLM ;Y LN ) for
any input distribution
• An easy converse

I(XLM ;Y LN )≤ max
PX∈P(X )

∑
d∈N+

πα(d) · I(PX ,W⊕d)

• Problem: Missing the − 1
β (1−πα(0)) term

• Does a decoder of an optimal system must know which
molecules have been sampled after correct decoding?

• Does a molecule must contain implicit information on its
index?

34/58



Proof – main challenge

• Challenge: Characterizing optimal distribution on
molecules. Why?

• Illustration: M = 2

• Option 1: Identical molecules XL
1 =XL

2
IID∼ PX

• Low MI I(PX ,W⊕2)
• Loss of order is immaterial

• Option 2: Independent molecules XL
1

IID∼ PX ⊥⊥XL
2

IID∼ PX

• High MI 2I(PX ,W )
• Loss of order causes loss of − 1

β (1−πα(0))

• Optimal choice depends on β and W
• In the regime where capacity is known, independent
molecules are optimal
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Proof outline – “far” and “close” molecules

• Challenge: What are “similar” and “independent”
molecules?

• In [Lenz et al 2020] for a BSC with crossover w:

• Molecules are different if dH(xLi ,xLj )≥ 4wL

• In our work: Soft similarity measure, based on conditional
typical sets

• The conditional typical set TL([W ] | xL0 )⊂ YL has high
probability when Y L ∼WL(· | xL0 )

• xL1 is “far” (“independent”) from xL0 if TL([W ] | xL0 ) has low
probability when Y L ∼WL(· | xL1 )

• The required distance is sub-linear in L
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Proof outline – properties of “far” and “close” molecules

1 Let a set of Θ(M) pairwise “far” molecules be input to a
permuting DNA channel

• Establish that observing the input and output molecules
gain information on the channel permutation

• The equivocation given input and output is negligible
compared to unconditional entropy

2 Let a pair of “close” molecules be given

• Establish that the mutual information is essentially as if
they are identical I(PX ,V ⊕2)
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Proof outline – bounding mutual information

• Upper bound the mutual information I(XLM ;Y LM ) for
Fano’s argument

• Use a fixed composition codebook
• A genie-aided decoder [Lenz et al 2019], that cluster output

molecules to Ỹ LM
⇒ Establish an upper bound on I(XLM ; Ỹ LM )

• Condition of QN+1: A subset of the input molecules is
pairwise “far”, the other subset is a “close” neighbor in the
first set

• The tightest bound obtained for all pairwise “far” molecules
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Proof outline – a clustering decoder
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Figure: A clustering decoder
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Proof outline – bounding mutual information

• Bound the average MI over QN+1 via Poissonization

• “Single-letterization” is done in two stages (from ML to L
and from L to 1)

• Removing the fixed composition assumption
• Obtaining a bound in which PX is optimized once for all
orders d
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A prospective refinement of the upper bound

• Recall: The CID is defined with a pair of molecules

CID(PX ,V ) = 2 · I(PX ,V )− I(PX ,V ⊕2)

• Idea: Generalize to a scattering measure for triplets of
molecules
• Why not quadruplets? quintuplets?
• The game is (most likely) not worth the (our) candle
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The assumption on the channel

• Recall: minx∈X , y∈YW (y | x)> 0 is a qualifying condition
for the converse

• Technically: Originates from the use of the blowing-up
lemma in the proof
• Example: binary erasure sequencing channel
• Fundamentally: If W (y | x) = 0 then molecule ordering is
easier
• Open problem: Not obvious if this is just a technical
condition that can be removed
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A side result: MI for IID v.s. fixed composition inputs

Lemma
Let PA ∈ PK(A) be a type for length K. Also let AK ∼ PA IID
and ÃK ∼Uniform[TK(PA)], and let BK and B̃K be their
outputs over a DMC. Then

0≤ I(AK ;BK)− I(ÃK ;B̃K) =O(
√
K · logK).

• Proof:

• Bounding entropy differences via Ornstein’s d-distance
[Polyanskiy and Wu 2016]

• Bounding d-distance by a KL divergence via Marton’s
transportation inequality [Marton 1996]

• A refined bound appears in [Tang and Polyanskiy 2022]
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Modulo-additive channels

Proposition
Let W be a modulo-additive channel, let P (unif)

X be the uniform
distribution over X . Then, for all

β ≥ 2
CID(P (unif)

X ,W )

it holds that

C(DNA) =
∑
d∈N+

πα(d) · I(P (unif)
X ,W⊕d)− 1

β
(1−πα(0)) .
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Binary symmetric channels

• For a BSC with crossover probability w

β ≥ 2
log2−hb (2w(1−w)) .

• [Lenz et al 2019-2020]: Only for w < 1/8

β > βcr := 2
log2−hb(4w) .
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Binary symmetric channels – critical molecule length
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Figure: Comparison between [Lenz 2019] and our result
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Numerical computation

• Given input distribution PX , all bounds can be accurately
computed by convex optimization

• Example: Asymmetric channel |X |= |Y|= 4

W0(y | x) = 1
100 ·


94 2 2 2
2 70 25 3
3 2 85 10
10 5 5 80


• Uniform input distribution PX = (1/4,1/4,1/4,1/4)
(sub-optimal)
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A numerical example – capacity
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Figure: Upper and lower bounds on C(DNA(5,β,W0)) as a function of
β (in nats).
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A numerical example – reliability function

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5

Figure: Right: Lower bound on the reliability function
E∗(R,DNA(5,β,W0),{M}) as a function of R (in nats).
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Conclusion and open problems

1 Capacity is settled in the low-noise/high-β regime for any
DMC W

• What is the capacity in the high-noise/low-β regime?
• Finite blocklength analysis? slow decay rates O( 1

logM ) to
limits

2 Error probability decays as e−Θ(M) rather than e−Θ(ML)

• An outage behavior of the channel
• Unlike for capacity, increasing α is not marginal in gain

N. Weinberger and N. Merhav,
“The DNA Storage Channel: Capacity and Error Probability

Bounds,”
IT-T, May 2022
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Motivation
Previously:

1 The decoder has extremely high computational complexity
(“optimal-like”)

• The computation of the metric of a single codeword has
complexity Θ(MN )

2 The sequencing channel W (L) is a DMC

• Practical channels also include deletions, insertions and so
on

3 Codeword length is ML but error probability decays as
e−Θ(M) rather than e−Θ(ML) (DMC)

• Improve by increasing coverage depth scaling

α= N

M
= Θ(1)→ α= αM = Ω(1)

4 Capacity increase due to multi-draws can be marginal

• Example: Let W be a BSC with crossover probability
w = 0.01

• C(W⊕d) = (0.91,0.97,0.99) for d= (1,2,3)
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Encoder and decoder

• Encoder: A coded-index scheme

• An inner code B(L) ⊂XL is partitioned to M sub-codes
{B(L)

m }m∈[M ]
• An outer-code encodes a message to a sequence xLM where
xLm ∈ B

(L)
m

• Decoder:

• Inner code decoding: Each output molecule yLn is decoded
to a codeword in B(L)

• An erasure is declared if there is no consensus on xLm
• Note: No (substantial) gain from multi-draws

• Outer code decoding
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Assumptions on the code

• A “black-box” inner code

1 Inner code rate: Rb = 1
L log |B(L)|> 1/β.

2 Vanishing inner code error probability: peb(B(L)) = e−Θ(Lζ)

where ζ > 0.
• A random outer code
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Main result – random coding and expurgated bounds

Theorem

• If N/M = Θ(1) then

liminf
M→∞

− 1
M

logpe(CM ,DM )≥ db
(

1− R

Rb−1/β

∣∣∣∣∣∣∣∣e− N
M

)
for any R< (Rb−1/β)(1−e−

N
M ).

• If N/M = ω(1) then

liminf
N→∞

− 1
N

logpe(CM ,DM )

≥


1
2

[
1− R

Rb−1/β

]
, N

ML < 2(Rb−1/β)
ML
N [Rb−1/β−R] , 2(Rb−1/β)≤ N

ML < 4(Rb−1/β)
1
4

[
1− R

Rb−1/β

]
, N

ML > 4(Rb−1/β)

for any R<Rb−1/β.
• Based on random coding and expurgated analysis
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Main result – discussion

1 A phase transition between N = Θ(M) and N = ω(M)

2 Expurgation improves in the regime N
ML > 4(Rb−1/β)

3 A slow decrease O( 1
logM ) to the asymptotic scaling

4 Establishing tightness of the bound seems challenging

• Poissonization is used in the proof – tight for expectations
but not for tails
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Conclusion

• A simplified analysis of a DNA storage scheme

• Towards practical encoding/decoding methods
• Error probability decays as e−Θ(N)

• Increasing coverage depth is vital for improving error
probability scaling

N. Weinberger
“Error Probability Bounds for Coded-Index DNA Storage

Systems,”
IT-T, November 2022

Thank You !
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