UNIQUE RECONSTRUCTION FROM SUBSTRINGS

Daniella Bar-Lev | Technion-Israel Institute of Technology

A joint work with:

Yonatan Yehezkeally | Technical University of Munich
Sagi Marcovich | Technion-Israel Institute of Technology
Eitan Yaakobi | Technion-Israel Institute of Technology

DNA Storage

String Reconstruction

Reconstruct string from multiple, incomplete and/or noisy observations

Examples:

- Levenshtein's reconstruction problem [1]
- Trace reconstruction problem [2]
- k-deck problem [3]

[^0]
Torn-Paper Reconstruction

D. Bar-Lev, S. Marcovich, E. Yaakobi, and Y. Yehezkeally, "Adversarial torn-paper codes," in IEEE ISIT, 2022.
S. Nassirpour, I. Shomorony, and A. Vahid, "Reassembly codes for the chop-and-shuffle channel," in arXiv, 2022.
A. N. Ravi, A. Vahid, and I. Shomorony, "Capacity of the torn paper channel with lost pieces," in IEEE ISIT, 2021.
I. Shomorony and A. Vahid, "Torn-paper coding," IEEE TIT, Dec. 2021.

Reconstruction from Substring-Composition

R. Gabrys and O. Milenkovic, "Unique reconstruction of coded sequences from multiset substring spectra," IEEE TIT, Jun. 2019.
G. Bresler, M. Bresler, and D. Tse, "Optimal assembly for high throughput shotgun sequencing," BMC Bioinformatics, Jul. 2013. H. M. Kiah, G. J. Puleo, and O. Milenkovic, "Codes for DNA sequence profiles," IEEE TIT, Jun. 2016.
S. Marcovich and E. Yaakobi, "Reconstruction of strings from their substrings spectrum," IEEE TIT, Jul. 2021.
A. S. Motahari, G. Bresler, and D. N. C. Tse, "Information theory of DNA shotgun sequencing," IEEE TIT, Oct. 2013.
Y. Yehezkeally, S. Marcovich, and E. Yaakobi, "Multi-strand reconstruction from substrings," in IEEE ITW, 2021

Partial-Overlap Channel

Probabelistic version of this channel:
Ravi, A. N., Vahid, A., and Shomorony, I. (2022). Coded Shotgun Sequencing. ACM JSAIT, 3(1), 147-159.

Agenda

Torn-Paper
Channel

03

Partial Overlap
Channel

04

Future Directions

Notations

$$
[n]=\{0,1, \ldots, n-1\} .
$$

$x \circ y$: concatenation of $x, y \in \Sigma^{*}$.
ℓ-substring of x : substring of length ℓ.

Torn-Paper Channel Single-Strand

Single-Strand Torn-Paper Reconstruction

D. Bar-Lev, S. Marcovich, E. Yaakobi, and Y. Yehezkeally, "Adversarial torn-paper codes," in IEEE ISIT, 2022.
S. Nassirpour, I. Shomorony, and A. Vahid, "Reassembly codes for the chop-and-shuffle channel," in arXiv, 2022.
A. N. Ravi, A. Vahid, and I. Shomorony, "Capacity of the torn paper channel with lost pieces," in IEEE ISIT, 2021.
I. Shomorony and A. Vahid, "Torn-paper coding," IEEE TIT, Dec. 2021.

Definitions

An ($L_{\min }, L_{\text {max }}$)-segmentation of $\boldsymbol{x} \in \Sigma^{n}$ is a multiset $\left\{\left\{\boldsymbol{u}_{0}, \boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m-1}\right\}\right\}$ of substrings such that:
(1) $\boldsymbol{x}=\boldsymbol{u}_{0} \circ \boldsymbol{u}_{1} \circ \cdots \circ \boldsymbol{u}_{m-1}$.
(2) $L_{\text {min }} \leq\left|\boldsymbol{u}_{i}\right| \leq L_{\max }$ for $0 \leq i<m-1$ and $\left|\boldsymbol{u}_{m-1}\right| \leq L_{\max }$
$\mathcal{J}_{L_{\text {min }}}^{L_{\text {max }}}(\boldsymbol{x})$: the multiset of all $\left(L_{\text {min }}, L_{\text {max }}\right)$-segmentations of \boldsymbol{x}.
Example: $\quad x=0001011001$
$\{\{0001,01,10,01\}\}$ is a $(2,4)$-segmentation of \boldsymbol{x}.

Definitions

An ($L_{\min }, L_{\max }$)-segmentation of $\boldsymbol{x} \in \Sigma^{n}$ is a multiset $\left\{\left\{\boldsymbol{u}_{0}, \boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m-1}\right\}\right\}$ of substrings such that:
(1) $\boldsymbol{x}=\boldsymbol{u}_{0} \circ \boldsymbol{u}_{1} \circ \cdots \circ \boldsymbol{u}_{m-1}$.
(2) $L_{\text {min }} \leq\left|\boldsymbol{u}_{i}\right| \leq L_{\max }$ for $0 \leq i<m-1$ and $\left|\boldsymbol{u}_{m-1}\right| \leq L_{\max }$
$\mathcal{J}_{L_{\text {min }}}^{L_{\text {max }}}(\boldsymbol{x})$: the multiset of all $\left(L_{\text {min }}, L_{\text {max }}\right)$-segmentations of \boldsymbol{x}.
Channel input: $\boldsymbol{x} \in \Sigma^{n}$
Channel output: an $\left(L_{\text {min }}, L_{\text {max }}\right)$-segmentation of \boldsymbol{x}.

Definitions

($L_{\text {min }}, L_{\text {over }}$)- single strand torn-paper code: code $\mathcal{C} \subseteq \Sigma^{n}$ such that for any two distinct strings $\boldsymbol{x}, \boldsymbol{x}^{\prime} \in \mathcal{C}$, it holds that $\mathcal{T}_{L_{\text {min }}}^{L_{\text {max }}}(\boldsymbol{x}) \cap \mathcal{T}_{L_{\text {min }}}^{L_{\text {max }}}\left(\boldsymbol{x}^{\prime}\right)=\emptyset$.

Single-Strand Torn-Paper Codes: Rate

Theorem: If $L_{\text {min }}=a \log n+O_{n}(1)$, for some value $a>1$, then for any $\left(L_{\text {min }}, L_{\text {max }}\right)$-single-strand torn-paper code $\mathcal{C} \subseteq \Sigma^{n}$,

$$
\mathrm{R}(\mathcal{C}) \leq 1-\frac{1}{a}+o(1)
$$

Preliminaries: Gray Code

A Gray Code is an ordering of Σ^{n} such that any two adjacent strings differ in only one symbol position.

Example:

$\Sigma=\{0,1\}$ and $n=3$
$\left|\Sigma^{3}\right|=8$

0	000
1	001
2	011
3	010

4	110
5	100
6	101
7	111

Preliminaries: Index Generation

Consider:

- Index length: $I=\left\lceil\log _{q}\left(n / L_{\text {min }}\right)\right\rceil$
- Block size: $f(n)=o(\log n)$
- $\boldsymbol{c}_{0}, \boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{q^{I}-1}$: the codewords of a
 q-ary Gray code, in order.

Encoded index:

Preliminaries: Run-Length Limited Encoding

For $t<N$ the set of run-length limited ($R L L$) strings is

$$
\mathcal{R L} \mathcal{L}_{t}(N) \triangleq\left\{\boldsymbol{x} \in \Sigma^{N}: \text { no } t \text {-length runs of zeros }\right\} .
$$

RLL encoder: input length m, output length $N=N_{n}(m)$, and $t=f(n)$

$$
E_{m}^{R L L}: \Sigma^{m} \rightarrow \mathcal{R} \mathcal{L} \mathcal{L}_{f(n)}\left(N_{n}(m)\right) .
$$

Construction A

Encoder for $\left(\boldsymbol{L}_{\text {min }}, \boldsymbol{L}_{\text {max }}\right)$-single strand Torn-Paper code $\boldsymbol{C}_{\boldsymbol{A}}(\boldsymbol{n})$:

Input: a sequence $\boldsymbol{x} \in \Sigma^{K m}$

Devide \boldsymbol{x} into q^{I} non-overlapping substrings of length m.

Next, we encode each substring $\boldsymbol{x}_{\boldsymbol{i}}$ into $\boldsymbol{z}_{\boldsymbol{i}} \in \Sigma^{L_{\text {min }}}$ independently.

Construction A

Encoder for $\left(\boldsymbol{L}_{\min }, \boldsymbol{L}_{\text {max }}\right)$-single strand Torn-Paper code $\boldsymbol{C}_{\boldsymbol{A}}(\boldsymbol{n})$:
For any $0 \leq i \leq K-1$:

(1) Encode $\boldsymbol{x}_{\boldsymbol{i}}$ using the RLL encoder to obtain $\boldsymbol{y}_{\boldsymbol{i}}=E_{m}^{R L L}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$.

(2) Let $\boldsymbol{c}_{\boldsymbol{i}}^{\prime \prime}$ be the i-th encoded index and let $\boldsymbol{z}_{\mathbf{i}}=\boldsymbol{c}_{\mathbf{i}}^{\prime \prime} \circ \mathbf{1 0}^{f(\boldsymbol{n})} \mathbf{1} \circ \boldsymbol{y}_{\boldsymbol{i}}$.

Construction A

Encoder for $\left(\boldsymbol{L}_{\min }, \boldsymbol{L}_{\text {max }}\right)$-single strand Torn-Paper code $\boldsymbol{C}_{\boldsymbol{A}}(\boldsymbol{n})$:
Finally, let $\operatorname{Enc}_{A}(\boldsymbol{x}) \triangleq \mathbf{z}=\mathbf{z}_{\mathbf{0}} \circ \mathbf{z}_{\mathbf{1}} \circ \cdots \circ \mathbf{z}_{\boldsymbol{K} \mathbf{- 1}} \circ \mathbf{z}_{\boldsymbol{K}}$

Construction A - Encoder Correctness

Every $L_{\text {min }}$-substring \boldsymbol{u} of \boldsymbol{z} :

- does not contain any occurrences of the marker 1000 except those explicitly added after each encoded index.
- either \boldsymbol{u} contains an occurrence of the marker or it has a suffix-prefix pair whose concatenation is the marker.

Construction A - Encoder Correctness

Either \boldsymbol{u} contains an occurrence of 10011 or it has a suffix-prefix pair whose concatenation is 1001 .

$\boldsymbol{c}_{\boldsymbol{i}}^{\prime \prime}$ and $\boldsymbol{c}_{\boldsymbol{i}+\boldsymbol{1}}^{\prime \prime}$ differ only at the parity symbol and one more coordinate.
$\boldsymbol{c}^{\prime \prime}$: the concatenation of the $(\alpha-j)$-suffix of \boldsymbol{u} with the j-prefix of \boldsymbol{u}.

Case 2: | $c_{i}^{\prime \prime}$ | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| $c_{i+1}^{\prime \prime}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ |$\quad \boldsymbol{c}^{\prime \prime}$ is equal to $\boldsymbol{c}_{\boldsymbol{i}}^{\prime \prime}$.

$c^{\prime \prime}$	$\mathbf{1}$	1	1

Hence, if the parity symbol is correct then i is the decoding of $\boldsymbol{c}^{\prime \prime}$ and otherwise i is the decoding of $\boldsymbol{c}^{\prime \prime}$ minus one.

Construction A - Rate

Theorem: Letting $f(n) \triangleq(1+o(1)) \sqrt{\log (n)}$ we have that

$$
\operatorname{red}\left(\mathcal{C}_{A}(n)\right) \leq \frac{n}{a}\left(1+\frac{2+o(1)}{\sqrt{\log (n)}}\right)
$$

Hence, Construction A asymptotically meets the upper bound.

Multi-Strand
 Reconstruction from
 Substring-Composition

Reconstruction from Substring-Composition

R. Gabrys and O. Milenkovic, "Unique reconstruction of coded sequences from multiset substring spectra," IEEE TIT, Jun. 2019.
G. Bresler, M. Bresler, and D. Tse, "Optimal assembly for high throughput shotgun sequencing," BMC Bioinformatics, Jul. 2013. H. M. Kiah, G. J. Puleo, and O. Milenkovic, "Codes for DNA sequence profiles," IEEE TIT, Jun. 2016.
S. Marcovich and E. Yaakobi, "Reconstruction of strings from their substrings spectrum," IEEE TIT, Jul. 2021.
A. S. Motahari, G. Bresler, and D. N. C. Tse, "Information theory of DNA shotgun sequencing," IEEE TIT, Oct. 2013.
Y. Yehezkeally, S. Marcovich, and E. Yaakobi, "Multi-strand reconstruction from substrings," in IEEE ITW, 2021

Notations

$$
x_{n, k} \triangleq\left\{\boldsymbol{S}=\left\{\left\{\boldsymbol{x}_{\mathbf{1}}, \ldots, \boldsymbol{x}_{\boldsymbol{k}}\right\}\right\}: \quad \forall i, \boldsymbol{x}_{\boldsymbol{i}} \in \Sigma^{n}\right\} .
$$

$||S||:$ number of unique elements in S.

Definitions

An ℓ-trace of $x \in \Sigma^{n}$ is a multiset of substrings such that:
(1) All substrings are of length at least ℓ.
(2) Succeeding substrings overlap is at least $\ell-1$.
(3) \boldsymbol{x} is covered by the substrings.
ℓ-trace spectrum of \boldsymbol{x}, denoted by $\mathcal{J}_{\ell}(\boldsymbol{x})$: set of all ℓ-traces of \boldsymbol{x}.
Example: $\quad x=1110111$
$\{\{11101,1101,10111,0111\}\}$ is a 4 -trace of x.

Definitions

An ℓ-trace of $x \in \Sigma^{n}$ is a multiset of substrings such that:
(1) All substrings are of length at least ℓ.
(2) Succeeding substrings overlap is at least $\ell-1$.
(3) x is covered by the substrings.
ℓ-trace spectrum of \boldsymbol{x}, denoted by $\mathcal{T}_{\ell}(\boldsymbol{x})$: set of all ℓ-traces of \boldsymbol{x}.

Example: $\quad x=1110111$

$\{\{11101,1101,10111,0111\}\}$ is a 4 -trace of x. $\mathcal{T}_{\ell}(\boldsymbol{S}) \triangleq \cup_{x \in S} \mathcal{T}_{\ell}(\boldsymbol{x})$.

Definitions

An ℓ-trace of $\boldsymbol{x} \in \Sigma^{n}$ is a multiset of substrings such that:
(1) All substrings are of length at least ℓ.
(2) Succeeding substrings overlap is at least $\ell-1$.
(3) x is covered by the substrings.
ℓ-trace spectrum of \boldsymbol{x}, denoted by $\mathcal{T}_{\ell}(\boldsymbol{x})$: set of all $\boldsymbol{\ell}$-traces of \boldsymbol{x}.
Channel input: $S \in \mathcal{X}_{n, k}$
Channel output: an ℓ-trace of S.

$$
\mathcal{T}_{\ell}(\boldsymbol{S}) \triangleq \cup_{x \in S} \mathcal{T}_{\ell}(\boldsymbol{x})
$$

Definitions

Multi-strand ℓ-trace code: code $\mathcal{C} \subseteq \mathcal{X}_{n, k}$ such that for any two distinct multisets $\boldsymbol{S}, \boldsymbol{S}^{\prime} \in \mathcal{C}$, it holds that $\mathcal{T}_{\ell}(\boldsymbol{S}) \cap \mathcal{T}_{\ell}\left(\boldsymbol{S}^{\prime}\right)=\varnothing$.

Preliminaries: Repeat-Free Encoding

$\mathcal{L}_{\ell}(\boldsymbol{x}) \in \mathcal{T}_{\ell}(\boldsymbol{x})$ is the ℓ-trace that consists of all the ℓ-substrings of \boldsymbol{x}.
Example: $\boldsymbol{x}=11101110101111$

$$
\mathcal{L}_{12}(\boldsymbol{x})=\{\{111011101011,110111010111,101110101111\}\}
$$

For $\ell<n$ the set of ℓ-repeat-free (RF) strings is

$$
\begin{aligned}
\mathcal{R} \mathcal{F}_{\ell}(n) & \triangleq\left\{\boldsymbol{x} \in \Sigma^{n}: \text { no } \ell-\text { substring repeats }\right\} \\
& =\left\{\boldsymbol{x} \in \Sigma^{n}:\left\|\mathcal{L}_{\ell}(\boldsymbol{x})\right\|=n-\ell+1\right\} .
\end{aligned}
$$

A multi-strand ℓ-repeat-free strings:

$$
\mathcal{R \mathcal { F } _ { \ell } (n , k) \triangleq \{ \boldsymbol { S } \in X _ { n , k } : | | \mathcal { L } _ { \ell } (\boldsymbol { S }) | | = k (n - \ell + 1) \} , ~ (n)}
$$

Preliminaries: Repeat-Free Encoding

Lemma: For all $\boldsymbol{S} \in \mathcal{R F}_{\ell}(n, k)$ there exists an efficient algorithm reconstructing \boldsymbol{S} from any ℓ-trace of \boldsymbol{S}.

Preliminaries: Index Generation

Consider:

- Index length: $I=\left\lceil\log _{q}(k)\right\rceil$

Construction B

Encoder for multi-strand ℓ-trace code $\mathcal{C}_{\boldsymbol{B}}$:

Input: a sequence $\boldsymbol{x} \in \Sigma^{m}$

Encode \boldsymbol{x} using the RF encoder for $\ell^{\prime}=\ell-\log k$ to obtain $\boldsymbol{y}=E_{m, \ell^{\prime}}^{\mathcal{R F}}(\boldsymbol{x})$.
y

$$
n^{\prime}=(n-\log k) k
$$

Divide \boldsymbol{y} into k non-overlapping substrings of length $n-\log k$.
y

Construction B

Encoder for multi-strand ℓ-trace code $\boldsymbol{\mathcal { C }}_{\boldsymbol{B}}$:

For each $\boldsymbol{y}_{\boldsymbol{i}}$ define $\widetilde{\boldsymbol{y}}_{\boldsymbol{i}}=\boldsymbol{c}_{\boldsymbol{i}} \circ \boldsymbol{y}_{\boldsymbol{i}}$

Finally, let $\operatorname{Enc}_{B}(\boldsymbol{x}) \triangleq\left\{\left\{\widetilde{\boldsymbol{y}}_{\boldsymbol{i}}: i \in[k]\right\}\right\} \in X_{n, k}$.

Construction C

Encoder for multi-strand ℓ-trace code $\mathcal{C}_{\boldsymbol{C}}$:

Input: a sequence $\boldsymbol{x} \in \Sigma^{m}$

Encode \boldsymbol{x} using the RF encoder to obtain $\boldsymbol{y}=E_{m, \ell}^{\mathcal{R F}}(\boldsymbol{x})$.
y

$$
n^{\prime}=(n-\ell) k+\ell
$$

Divide \boldsymbol{y} into $k \ell$-overlapping substrings of length n.

Finally, let $\left.\operatorname{Enc}_{C}(\boldsymbol{x}) \triangleq\left\{\boldsymbol{y}_{i}: i \in[k]\right\}\right\} \in X_{n, k}$.

Constructions B\&C - Rate

Reconstruction from Substrings with Partial Overlap

Partial-Overlap Channel

Probabelistic version of this channel:
Ravi, A. N., Vahid, A., and Shomorony, I. (2022). Coded Shotgun Sequencing. ACM JSAIT, 3(1), 147-159.

Definitions

An ($L_{\text {min }}, L_{\text {over }}$)-trace of $\boldsymbol{x} \in \Sigma^{n}$ is a multiset of substrings such that:
(1) All substrings are of length at least $L_{\text {min }}$.
(2) Succeeding substrings overlap at least $L_{\text {over }}$.
(3) x is covered by the substrings.
($L_{\text {min }}, L_{\text {over }}$)- trace spectrum of \boldsymbol{x}, denoted by $\mathcal{T}_{L_{\text {min }}}^{L_{\text {over }}}(\boldsymbol{x})$: set of all ($L_{\text {min }}, L_{\text {over }}$)-traces of \boldsymbol{x}.

Example:

$$
x=111011101011111
$$

$\{\{1110111,1110101,011111\}$ is a (6,2)-trace of \boldsymbol{x}.

Definitions

An ($L_{\text {min }}, L_{\text {over }}$)-trace of $\boldsymbol{x} \in \Sigma^{n}$ is a multiset of substrings such that:
(1) All substrings are of length at least $L_{\text {min }}$.
(2) Succeeding substrings overlap at least $L_{\text {over }}$.
(3) x is covered by the substrings.
($L_{\text {min }}, L_{\text {over }}$)- trace spectrum of \boldsymbol{x}, denoted by $\mathcal{J}_{L_{\text {min }}}^{L_{\text {over }}}(\boldsymbol{x})$: set of all $\left(L_{\min }, L_{\text {over }}\right)$-traces of \boldsymbol{x}.

Channel input: $x \in \Sigma^{n}$
Channel output: an ($L_{\text {min }}, L_{\text {over }}$)-trace of \boldsymbol{x}.

Definitions

($L_{\text {min }}, L_{\text {over }}$)-trace code: code $\mathcal{C} \subseteq \Sigma^{n}$ such that for any two distinct strings $\boldsymbol{x}, \boldsymbol{x}^{\prime} \in \mathcal{C}$, it holds that $\mathcal{T}_{L_{\text {min }}}^{L_{\text {over }}}(\boldsymbol{x}) \cap \mathcal{T}_{L_{\text {min }}}^{L_{\text {over }}}\left(\boldsymbol{x}^{\prime}\right)=\emptyset$.

Construction for ($L_{\text {min }}, L_{\text {over }}$)-Trace Codes

$$
\begin{array}{ll}
L_{\min }=a \log (n)+O_{n}(1), & a>1 \\
L_{\mathrm{over}}=\gamma L_{\min }+O_{n}(1), & 0<\gamma \leq \frac{1}{a}
\end{array}
$$

Preliminaries: Index Generation

Consider:

- Index length: $I \approx\left(1-\frac{1-\gamma a}{1-\gamma}\right) L_{\text {min }}$
- Block size: $f(n)=o(\log n)$
- \# blocks: $F=\frac{I}{f(n)}$

Segments of the encoded index

Preliminaries: Repeat-Free Encoding

For $\ell<N$ the set of repeat-free (RF) strings is

$$
\mathcal{R F}_{\ell}(N) \triangleq\left\{\boldsymbol{x} \in \Sigma^{N}: \text { no } \ell-\text { substring repeats }\right\} .
$$

Lemma: For $q>2$ and integers $\ell(N)>\lceil\log (N)\rceil+3\lceil\log \log (N)\rceil$ and $\lceil\log \log (N)\rceil<t$ $\leq\left\lfloor\frac{\ell(N)-\lceil\log (N)]}{3}\right]$, there exists an efficient encoder/decoder pair of $\mathcal{R F}_{\ell(N)}(N)$ that also does not contain any t-length runs of zeros, with rate $1-O_{n}\left(\frac{t}{n}+q^{-t}\right)$.

Define encoder $\boldsymbol{E}_{\boldsymbol{m}, \ell}^{\mathcal{R F}}$: input length m, output length $N=N_{n, \ell}(m), t=f(n)$

Similar result was proven in [1] for specific values of $\ell(n)$ and t

Construction D

Encoder for $\left(\boldsymbol{L}_{\mathbf{m i n}}, \boldsymbol{L}_{\text {over }}\right)$-trace code $\boldsymbol{C}_{\boldsymbol{D}}$:

Input: a sequence $\boldsymbol{x} \in \Sigma^{q^{I} m}$

Devide \boldsymbol{x} into q^{I} non-overlapping substrings of length m.

Next, we encode each substring $\boldsymbol{x}_{\boldsymbol{i}}$ into $\boldsymbol{z}_{\boldsymbol{i}} \in \Sigma^{n / q^{I}}$ independently.

Construction D

Encoder for $\left(L_{\text {min }}, L_{\text {over }}\right)$-trace code $\mathcal{C}_{\boldsymbol{D}}$:

For any $0 \leq i \leq q^{I}-1$ we want z_{i} to satisfy two properties:
(1) the index i can be decoded from any $L_{\min }$-substring of z_{i}, and
(2) the string $\boldsymbol{z}_{\boldsymbol{i}}$ can be uniquely reconstructed from any ($L_{\min }, L_{\text {over }}$) -trace of $\boldsymbol{z}_{\boldsymbol{i}}$.

Then, we let

$$
\operatorname{Enc}_{A}(\boldsymbol{x}) \triangleq \mathbf{z}=\boldsymbol{z}_{0} \circ \cdots \circ \mathbf{z}_{q^{I}-1} .
$$

Construction D

Encoder for $\left(L_{\text {min }}, L_{\text {over }}\right)$-trace code $\mathcal{C}_{\boldsymbol{D}}$:

For any $0 \leq i \leq q^{I}-1$:

(1) Encode $\boldsymbol{x}_{\boldsymbol{i}}$ using the RF encoder to obtain $\boldsymbol{y}_{\boldsymbol{i}}=E_{m, \ell}^{\mathcal{R F}}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$.

(2) Partition $\boldsymbol{y}_{\boldsymbol{i}}$ into $\frac{n}{q^{I} L_{\min }}$ non-overlapping segments of length $L_{\text {min }}-r$.

Construction D

Encoder for $\left(L_{\text {min }}, L_{\text {over }}\right)$-trace code $\mathcal{C}_{\boldsymbol{D}}$:

(3) For all $j \in\left[n /\left(q^{I} L_{\text {min }}\right)\right]$:

(3.1) Partition $\boldsymbol{y}_{i, j}$ into F non-overlapping segments of equal lengths (up to ± 1, if necessary).

(3.2) For $k \in[F]$, let $\boldsymbol{z}_{i, j}^{(k)} \triangleq \boldsymbol{y}_{i, j}^{(k)} \circ \boldsymbol{c}_{\boldsymbol{i}}^{(k)}$

Construction D

Encoder for $\left(L_{\text {min }}, L_{\text {over }}\right)$-trace code $\mathcal{C}_{\boldsymbol{D}}$:

(4) Concatenate $\boldsymbol{z}_{i}=\boldsymbol{z}_{i, 0} \circ \boldsymbol{z}_{i, 1} \circ \cdots \circ \boldsymbol{z}_{i, \frac{n}{q^{L_{\text {min }}}}}-1$

Lastly, we concatenate all the $\boldsymbol{z}_{\boldsymbol{i}}$ strings, in order, to obtain the code word

$$
\operatorname{Enc}_{D}(\boldsymbol{x}) \triangleq \mathbf{z}=z_{0} \circ \cdots \circ \mathbf{z}_{q^{I}-1}
$$

Construction D - Overview

Construction D - Encoder Correctness

Lemma: Every $L_{\text {min }}$-substring \boldsymbol{u} of \boldsymbol{z} contains as subsequences at least an $(I-\mu)$-suffix of \boldsymbol{c}_{i} and μ-prefix of either \boldsymbol{c}_{i} or \boldsymbol{c}_{i+1} for some $i \in\left[q^{I}\right]$ and $\mu \in[I]$, in identifiable locations.

Construction D - Encoder Correctness

Lemma: Every $L_{\text {min }}$-substring \boldsymbol{u} of \mathbf{z} contains as subsequences at least an $(I-\mu)$-suffix of \boldsymbol{c}_{i} and μ-prefix of either \boldsymbol{c}_{i} or \boldsymbol{c}_{i+1} for some $i \in\left[q^{I}\right]$ and $\mu \in[I]$, in identifiable locations.

Lemma: Every $L_{\text {over }}$-substring \boldsymbol{v} of \boldsymbol{z} contains at least ℓ consecutive symbols of $\boldsymbol{y} \triangleq \boldsymbol{y}_{\mathbf{0}} \circ \boldsymbol{y}_{\mathbf{1}} \circ \cdots \circ \boldsymbol{y}_{\boldsymbol{q}^{I}-\mathbf{1}}$.

Construction D - Encoder Correctness

Theorem : for all admissible values of n, the $\operatorname{code} \mathcal{C}_{D}$ is an ($L_{\mathrm{min}}, L_{\text {over }}$)-trace code.
Proof: Take $\boldsymbol{z} \in \mathcal{C}_{D}$ and let $T \in \mathcal{T}_{L_{\text {min }}}^{L_{\text {over }}}$ be an $\left(L_{\text {min }}, L_{\text {over }}\right)$-trace of \boldsymbol{z}.

Let $\boldsymbol{u} \in T$, we can assume w.l.o.g. that $|\boldsymbol{u}|=L=L_{\text {min }}$.
Note that:

1. The segment \boldsymbol{u} does not contain any occurrences of the marker $100 \quad 1$ except those explicitly added as a prefix of $\boldsymbol{z}_{i, j}$ (for some i, j).
2. For any $i, j,\left|z_{i, j}\right| \leq L_{\text {min }}$.
3. Either \boldsymbol{u} contains an occurrence of $100 \quad 1$ or it has a suffix-prefix pair whose concatenation is 1$] 00 \quad 1$.

Construction D - Encoder Correctness

Either \boldsymbol{u} contains an occurrence of 100 [1] or it has a suffix-prefix pair whose concatenation is 1001 .
\boldsymbol{u}

\boldsymbol{u}

\boldsymbol{u}

We can always correctly deduce i from \boldsymbol{u}.
It is therefore possible to partition T by the index i (corresponding to the substring $\boldsymbol{z}_{\boldsymbol{i}}$).

Construction D - Encoder Correctness

If \boldsymbol{u} is intersecting both $\boldsymbol{y}_{i}, \boldsymbol{y}_{i+1}$, then \boldsymbol{u} contains the complete synchronization marker 10011 hence its location in \boldsymbol{u} implies the exact location of \boldsymbol{u} in \boldsymbol{z}.

Construction D - Encoder Correctness

\boldsymbol{u}

Lemma: Every $L_{\text {over }}$-substring \boldsymbol{v} of \boldsymbol{z} contains at least l consecutive symbols of $\boldsymbol{y} \triangleq \boldsymbol{y}_{\mathbf{0}} \circ \boldsymbol{y}_{\mathbf{1}} \circ \ldots \circ \boldsymbol{y}_{\boldsymbol{q}} \boldsymbol{I}_{\mathbf{1}}$.

Since each y_{i} is ℓ-repeat-free, there exist a unique way to match the overlaps of these substrings.

Construction D - Encoder Correctness

\boldsymbol{u}

Lemma: Every $L_{\text {over }}$-substring \boldsymbol{v} of \boldsymbol{z} contains at least l consecutive symbols of $\boldsymbol{y} \triangleq \boldsymbol{y}_{\mathbf{0}} \circ \boldsymbol{y}_{\mathbf{1}} \circ \ldots \circ \boldsymbol{y}_{\boldsymbol{q}} \boldsymbol{I}_{\mathbf{1}}$.

Since each y_{i} is ℓ-repeat-free, there exist a unique way to match the overlaps of these substrings.
Finally, once \boldsymbol{z} is reconstructed we may extract $\left\{\boldsymbol{y}_{i}\right\}_{i \in\left[q^{I}\right]}$, then decode $\left\{\boldsymbol{x}_{i}\right\}_{i \in\left[q^{I}\right]}$ with the decoder of $E_{m, \ell}^{\mathcal{R F}}$.

Construction D - Rate

Theorem: Letting $f(n) \triangleq\lceil\sqrt{\log (n)}\rceil$ we have that

$$
R\left(\mathcal{C}_{D}\right) \geq \frac{1-\frac{1}{a}}{1-\gamma}-\frac{\frac{1}{a}}{(\log (n))^{0.5-\epsilon}}-O\left(\frac{1}{\sqrt{\log (n)}}\right)
$$

Maximum Asymptotic Rate of ($\boldsymbol{L}_{\text {min }}, \boldsymbol{L}_{\text {over }}$)-Trace Codes

Lemma: If $L_{\text {min }}=a \log (n)+O_{n}(1)$ and $L_{\text {over }}=\gamma L_{\min }+O_{n}(1)$, for some $a>1$ and $0<\gamma \leq \frac{1}{a}$, then any ($L_{\text {min }}, L_{\text {over }}$)-trace code $\mathcal{C} \subseteq \Sigma^{n}$ satisfies

$$
R(C) \leq \frac{1-\frac{1}{a}}{1-\gamma}+O\left(\frac{\log \log (n)}{\log (n)}\right)
$$

Hence, Construction D asymptotically meets the upper bound.
Corollary: If $\limsup _{n \rightarrow \infty} \frac{L_{\min }}{\log (n)} \leq 1$, then $R(\mathcal{C})=o_{n}(1)$ for any $\left(L_{\text {min }}, L_{\text {over }}\right)$-trace code $\mathcal{C} \subseteq \Sigma^{n}$.

Future Work

- Erroneous versions of the channels.
- Multistrand setup for the partial overlap channel.
- Analyze the worst-case for a more realistic setup.

References

[1] D. Bar-Lev, S. Marcovich, E. Yaakobi, and Y. Yehezkeally, "Adversarial Torn-Paper Codes", submitted to IEEE Transactions on Information Theory.
[2] Y. Yehezkeally, D. Bar-Lev, S. Marcovich, and E. Yaakobi, "Generalized Unique Reconstruction from Substrings", submitted to IEEE Transactions on Information Theory.

and also

[3] Y. Yehezkeally, S. Marcovich, and E. Yaakobi, "Multi-strand reconstruction from substrings," in IEEE ITW, 2021
[4] D. Bar-Lev, S. Marcovich, E. Yaakobi, Y. Yehezkeally, "Adversarial Torn-Paper Codes," in IEEE ISIT, 2022.
[5] Y. Yehezkeally, D. Bar-Lev, S. Marcovich, and E. Yaakobi, "Reconstruction from Substrings with Partial Overlap", in IEEE ISITA., 2022.

Thank You!

[^0]: [1] V. I. Levenshtein, "Efficient reconstruction of sequences from subsequences or supersequences," J. Combin. Theory, Feb. 2001
 [2] T. Batu, S. Kannan, S. Khanna, and A. McGregor, "Reconstructing strings from random traces," in SODA, Society for Industrial and Applied Mathematics, Jan. 2004,
 [3] B. Manvel, A. Meyerowitz, A. Schwenk, K. Smith, and P. Stockmeyer, "Reconstruction of sequences," Discrete Mathematics, 1991.

