Reed-Solomon Codes Against Adversarial Insertions and Deletions

RONI CON

JOINT WORK WITH AMIR SHPILKA AND ZACHI TAMO

Insertions, Deletions, and Edit Distance

- ightharpoonup Deletion: $10010 \rightarrow 100$
- \bullet Insertion: $0110 \rightarrow 01010$
- \star ED(s, s'): The minimal number of insertions and deletions for $s \to s'$.

Why Insertions and Deletions?

- Model synchronization errors.
- ❖ Appear naturally in DNA and RNA.
- DNA storage.
- Trace reconstruction problem.

Longest Common Subsequence

An LCS between s and s' is a maximal length subsequence of both. The length is denoted |LCS(s,s')|.

LCS and ED

It holds that

$$ED(s,s') = |s| + |s'| - 2|LCS(s,s')|$$

♦ Small LCS ↔ large edit distance.

 $C \subseteq \Sigma^n$.

$$ED(C) = \min_{\substack{c,c' \in C \\ c \neq c'}} ED(c,c') \qquad and \qquad LCS(C) = \max_{\substack{c,c' \in C \\ c \neq c'}} LCS(c,c')$$

$$LCS(C) < n - \delta n \leftrightarrow ED(C) > 2\delta n.$$

* Rate:

$$R = \frac{\log(|C|)}{n \cdot \log(|\Sigma|)}$$

Background on Insdel Codes

- * [VT65, Lev66]: Optimal binary codes correcting 1 deletion/insertion.
- ❖ [HS17]: Efficient codes of rate $1 \delta \varepsilon$ with alphabet size $O_{\varepsilon}(1)$ correcting δ -fraction of insdel.
- ❖ [Hae19], [CJLW19]: Efficient binary codes of rate $1 O(\delta \log^2 \frac{1}{\delta})$ correcting δ -fraction of insdel.
- ❖ [GS19, SRB20, GH21]: Best binary codes correcting 2 deletion/insertion.

Not linear codes!

Linear Codes

- \diamond A linear code of *length* n and *dimension* k:
 - $C \subseteq \mathbb{F}_q^n$ linear subspace of dimension k.
- Notation: $[n, k]_q$ code
- $Rate: R = \frac{k}{n}$

We Love Linear Codes

- Compact representations.
 - ❖ Generating matrix, *G*: rows are basis of the linear codes

$$C = \{ xG | x \in \mathbb{F}_q^k \}.$$

❖ Parity check matrix, H:

$$C = \{ x \in \mathbb{F}_q^n \mid Hx = 0 \}.$$

- Efficiently encodable.
- * Familiar, easier to analyze, and sometimes even efficiently decodable.

Previous Results - Insdel Linear Codes

- \bullet [CGHL21]: There are linear codes with rate $\frac{1-\delta}{2} \frac{h(\delta)}{\log_2 q}$.

	q	δ	R
[CGHL21]	2	< 1/400	$\approx 2^{-80}$
[CST22]	$poly(\varepsilon^{-1})$	< 1/4	$(1-4\delta)/8-\varepsilon$
[CST22]	2	< 1/54	$(1 - 54\delta)/1216$

What about RS codes against insdel errors?

Reed-Solomon Codes

Let $\alpha_1,\ldots,\alpha_n\in\mathbb{F}_q$ be distinct. The $[n,k]_q$ RS code defined with α_1,\ldots,α_n is

$$C \coloneqq \left\{ \left(f(\alpha_1), \dots, f(\alpha_n) \right) \middle| f \in \mathbb{F}_q[X], \deg(f) < k \right\}$$

- Linear code.
- Arr Rate: $\frac{k}{n}$
- $\Leftrightarrow q \geq n$.

Vandermonde Matrix

Generating matrix of RS codes:

$$V = \begin{pmatrix} 1 & \alpha_1 & \dots & \alpha_1^{k-1} \\ 1 & \alpha_2 & \dots & \alpha_2^{k-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \alpha_n & \dots & \alpha_n^{k-1} \end{pmatrix}$$

$$m = (a_0, \dots, a_{k-1})$$

$$f = \sum_{i=1}^{k-1} a_i x^i$$

$$V \cdot m = c$$

$$c = (f(\alpha_1), \dots, f(\alpha_n))$$

We Love RS codes

- Linear and have efficient decoding!
- Data storage
 - CDs, DVDs, etc...
 - * Facebook, Google, etc..
- QR codes
- Space transmission.
- Crypto: Shamir's secret sharing, MPC, etc...

The k=2 case.

Classical:

$$(\alpha_i, f(\alpha_i)), (\alpha_j, f(\alpha_j))$$
 f

This work:

$$f(\alpha_i), f(\alpha_j), f(\alpha_s)$$
 $i < j < s$

Previous & Our Results k = 2.

	q	Correcting deletions
[WMSN04]	q > 9 $(n = 5)$	1
[DLTX19]	$\exp(n)$	n-3
[CST21]	$O(n^4)$	n-3
[LX21]	$O(n^5)$	n-3

[CST21] Lower Bound: $q = \Omega(n^3)$.

Previous & Our Results k > 2.

	q	Correcting deletion
[TSN07]	O(n)	$\log_{k+1} n - 1$
Existence [CST21]	$n^{O(k)}$	n-2k+1
Construction [CST21]	$\approx n^{k^k}$	n-2k+1

Match the half-Singleton Bound*

^{*} Half-Singleton Bound [CGHL21]: Any linear code that corrects δ fraction of deletions must have rate $\leq \frac{1-\delta}{2} + o(1)$

Algebraic Condition

Definition (Increasing vectors):

 $I \subseteq [n]^s$ is an increasing vector if $1 \le I_1 < I_2 < \cdots < I_s \le n$.

Notation

$$c_I := (c_{I_1}, c_{I_2}, \dots, c_{I_S})$$

 $\diamond c_I$ is a subsequence of c of length s.

Algebraic Condition

Definition: Let $I, J \subseteq [n]^{2k-1}$ be increasing vectors and X_1, \dots, X_n be formal variables.

$$\det(V_{I,I}) \in \mathbb{F}_q[X_1, \dots, X_n].$$

Algebraic Condition

$$V_{I,J}(\alpha_1,\ldots,\alpha_n) = \begin{pmatrix} 1 & \alpha_{I_1} & \ldots & \alpha_{I_1}^{k-1} & \alpha_{J_1} & \ldots & \alpha_{J_1}^{k-1} \\ 1 & \alpha_{I_2} & \ldots & \alpha_{I_2}^{k-1} & \alpha_{J_2} & \ldots & \alpha_{J_2}^{k-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ldots & \vdots \\ 1 & \alpha_{I_{2k-1}} & \ldots & \alpha_{I_{2k-1}}^{k-1} & \alpha_{J_{2k-1}} & \ldots & \alpha_{J_{2k-1}}^{k-1} \end{pmatrix}$$

Claim:

Let $\alpha = (\alpha_1, ..., \alpha_n)$ and consider the $[n, k]_q$ RS code defined with α .

If for every two increasing vectors $I,J\subseteq [n]^{2k-1}$ that agree on at most k-1 coordinates, it holds that $\det\left(V_{I,J}(\alpha)\right)\neq 0$, then the code can correct any n-2k+1 deletions.

Proof of Claim

- Assume that the claim does not holds.
- There are distinct

$$c = (f(\alpha_1), \dots, f(\alpha_n)), \quad f = \sum_{i=0}^{k-1} f_i x^i$$

$$c' = (g(\alpha_1), \dots, g(\alpha_n)), \quad g = \sum_{i=0}^{k-1} g_i x^i$$
such that $|LCS(c, c')| \ge 2k - 1$.

 \clubsuit There are two increasing $I,J\subseteq [n]^{2k-1}$ such that $c_I=c_J'$.

Claim:

$$V_{I,J}(\alpha) = \begin{pmatrix} 1 & \alpha_{I_1} & \dots & \alpha_{I_1}^{k-1} & \alpha_{J_1} & \dots & \alpha_{J_1}^{k-1} \\ 1 & \alpha_{I_2} & \dots & \alpha_{I_2}^{k-1} & \alpha_{J_2} & \dots & \alpha_{J_2}^{k-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & \alpha_{I_{2k-1}} & \dots & \alpha_{I_{2k-1}}^{k-1} & \alpha_{J_{2k-1}} & \dots & \alpha_{J_{2k-1}}^{k-1} \end{pmatrix}$$

For every two increasing vectors $I,J\subseteq [n]^{2k-1}$ that agree on at most k-1 coordinates, it holds that $\det\left(V_{I,J}(\alpha)\right)\neq 0$, then the code can correct any n-2k+1 deletions.

Proof of Claim

- $f(\alpha_{I_s}) = g(\alpha_{J_s})$ for every $1 \le s \le 2k 1$.
- \Leftrightarrow If I, J agree on $\geq k$ coordinates then $f \equiv g$.
- Otherwise, the vector

$$(f_0 - g_0, f_1, \dots, f_{k-1}, -g_1, \dots, -g_{k-1})$$

is nonzero and in the kernel of $V_{I,I}(\alpha)$.

Claim:

$$V_{I,J}(\alpha) = \begin{pmatrix} 1 & \alpha_{I_1} & \dots & \alpha_{I_1}^{k-1} & \alpha_{J_1} & \dots & \alpha_{J_1}^{k-1} \\ 1 & \alpha_{I_2} & \dots & \alpha_{I_2}^{k-1} & \alpha_{J_2} & \dots & \alpha_{J_2}^{k-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & \alpha_{I_{2k-1}} & \dots & \alpha_{I_{2k-1}}^{k-1} & \alpha_{J_{2k-1}} & \dots & \alpha_{J_{2k-1}}^{k-1} \end{pmatrix}$$

For every two increasing vectors $I,J\subseteq [n]^{2k-1}$ that agree on at most k-1 coordinates, it holds that $\det\left(V_{I,J}(\alpha)\right)\neq 0$, then the code can correct any n-2k+1 deletions.

Existence – Road Map (Informal)

$$V_{I,J} = \begin{pmatrix} 1 & X_{I_1} & \dots & X_{I_1}^{k-1} & X_{J_1} & \dots & X_{J_1}^{k-1} \\ 1 & X_{I_2} & \dots & X_{I_2}^{k-1} & X_{J_2} & \dots & X_{J_2}^{k-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & X_{I_{2k-1}} & \dots & X_{I_{2k-1}}^{k-1} & X_{J_{2k-1}} & \dots & X_{J_{2k-1}}^{k-1} \end{pmatrix}$$

- \diamond Show: $\det(V_{I,J})$ is not the zero polynomial for any two increasing I,J that agree on $\leq k-1$.
- Arr There are at most $\binom{n}{2k-1}^2$ pairs I, J.

$$P(X_1, \dots, X_n) := \prod_{I,J} \det(V_{I,J}) \not\equiv 0$$

- Schwarz-Zippel lemma.

The k=2 case.

Theorem

There exists an explicit $[n, 2]_q$ RS code that can correct from n-3 insdel errors where $q=O(n^4)$.

Sidon Spaces

Definition (Sidon Space): $S \subseteq \mathbb{F}_{q^n}$ such that

- $\diamond S$ is linear subspace over \mathbb{F}_q .
- \diamond $\forall a, b, c, d \in S$. If ab = cd, then $\{a\mathbb{F}_q, b\mathbb{F}_q\} = \{c\mathbb{F}_q, d\mathbb{F}_q\}$.

Theorem [RRT17]:

Let $q \ge 3$ prime power, m an integer. There is an explicit m dimensional Sidon space $S \subseteq \mathbb{F}_{q^{2m}}$ (over \mathbb{F}_q).

Long Code

Theorem [GS86]:

For every integer $m \ge 1$, there exists an explicit $\left[\frac{(3^m+1)}{2}, \frac{(3^m+1)}{2} - 2m\right]_3$ linear code with hamming distance ≥ 5 .

Construction

- *m: positive integer.
- $S \subseteq \mathbb{F}_{3^{4m}}$: Sidon space of dimension $2m. s_1, ..., s_{2m}$ is basis of S.
- $*H \in \mathbb{F}_3^{2m \times \left(\frac{3^{m+1}}{2}\right)}$: the parity check matrix of the long code.
- Define the points of the $\left[\left(\frac{3^m+1}{2}\right), 2\right]_{3^{4m}}$ RS code:

$$(\alpha_1, \dots, \alpha_n) = (s_1, \dots, s_{2m}) \cdot H$$

\display Lemma: Any 4 points of our code are linearly independent over \mathbb{F}_3 .

Proof

- \diamond Assume that the code does not correct n-3 deletions.
- \diamond There are (x_1, x_2, x_3) , (y_1, y_2, y_3) that agree on at most 1 coordinate such that

$$\det\begin{pmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{pmatrix} = 0$$

Equivalently

$$(y_1 - y_2)(x_2 - x_3) = (y_2 - y_3)(x_1 - x_2)$$

 $\Rightarrow \exists \lambda \in \mathbb{F}_q \text{ such that }$

$$\lambda(y_1 - y_2) = y_2 - y_3$$
 or $\lambda(y_1 - y_2) = x_1 - x_2$

Contradicts the lemma.

Proof of the lemma

Lemma: Any 4 points of our code are linearly independent over \mathbb{F}_q .

- \diamond Assume α_1 , α_2 , α_3 , α_4 are dependent.
- There are $\beta_1, \beta_2, \beta_3, \beta_4 \in \mathbb{F}_q$ such that $\sum_{i=1}^4 \beta_i \alpha_i = 0$.

$$0 = \sum_{i=1}^{4} \beta_i \alpha_i = \sum_{i=1}^{4} \beta_i \sum_{j=1}^{2m} s_j H_{j,i} = \sum_{j=1}^{2m} s_j \sum_{i=1}^{4} \beta_i H_{j,i}$$

- \diamond The s_i 's are independent over \mathbb{F}_q .
- ❖ For all j, $\sum_{i=1}^{4} \beta_i H_{j,i} = 0$. Contradiction! (the distance of the code is ≥ 5).

k > 2 case

Mason-Stothers Thm:

Let a(t), b(t), and c(t) be relatively prime polynomials such that a+b=c and not all of them have vanishing derivative. Then,

$$\max\{\deg(a),\deg(b),\deg(c)\} \le \deg\bigl(rad(abc)\bigr) - 1$$

(rad(f)) is the product of the distinct irreducible factors of f)

Thm [VW03]:

Let $m \ge 2$ and $Y_0(x) = Y_1(x) + \cdots + Y_m(x)$ where $Y_j(x) \in \mathbb{F}_p[x]$. Assume that

- Y_1, \dots, Y_m are linearly independent over $\mathbb{F}_p(x^p)$

Then,

$$\deg(Y_0) \le -\binom{m}{2} + (m-1) \sum_{j=0}^{m} \nu(Y_j)$$

 $(\nu(Y_i))$ is the number of distinct roots of Y_i with multiplicity not divisible by p)

Construction

- $\ell = ((2k)!)^2.$
- ightharpoonup ightharpoonup ho where $p > k^2 \cdot \ell$.
- $ightharpoonup \mathbb{F}_q$ such that $\left[\mathbb{F}_q \colon \mathbb{F}_p\right] = k^2 \cdot \ell$.
- $\gamma \in \mathbb{F}_q$ such that $\mathbb{F}_q = \mathbb{F}_p(\gamma)$.
- \diamond Construction points: $\forall i \in [n]$ (where n < p):

$$\alpha_i = (\gamma - i)^{\ell}$$

$\{\alpha_1 = (\gamma-1)^\ell, \dots, \alpha_n = (\gamma-n)^\ell\}$ \mathbb{F}_q $\{x^2 \cdot \ell \mid \gamma \in \mathbb{F}_q \mid \gamma \in \mathbb{F}_q \in \mathbb{F}_q \mid \gamma \in \mathbb{F}_q \in \mathbb{F}_$

 $\{1,2,...,n\}$

Claim:

The $[n,k]_q$ RS code with α_1,\ldots,α_n can correct from n-2k+1 deletions.

Proof idea (informal)

$$V_{I,J}(\alpha) = \begin{pmatrix} 1 & \alpha_{I_1} & \dots & \alpha_{I_1}^{k-1} & \alpha_{J_1} & \dots & \alpha_{J_1}^{k-1} \\ 1 & \alpha_{I_2} & \dots & \alpha_{I_2}^{k-1} & \alpha_{J_2} & \dots & \alpha_{J_2}^{k-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & \alpha_{I_{2k-1}} & \dots & \alpha_{I_{2k-1}}^{k-1} & \alpha_{J_{2k-1}} & \dots & \alpha_{J_{2k-1}}^{k-1} \end{pmatrix}$$

If
$$\det\left(V_{I,J}(\alpha)\right) = 0$$
, then

$$\det(V_{I,J}(\alpha)) = P_0(\gamma) + P_1(\gamma) + \dots + P_{(2k-1)!-1}(\gamma) = 0.$$

Proof idea (very informal)

$$\det(V_{I,J}(\alpha)) = P_0(\gamma) + P_1(\gamma) + \dots + P_{(2k-1)!-1}(\gamma) = 0.$$

$$\alpha_i = (\gamma - i)^{\ell}$$

By thm, it holds that

$$\deg(P_0) < (2k-1)! \sum_{j=0}^{(2k-1)!-1} \nu(P_j) \le ((2k-1)!)^2 \cdot (2k-2) < \ell$$

Conclusion & Open Questions

- **Explicit construction with smaller field size.**
- \diamond A tighter lower bound on the field size for k > 2.
- Decoding algorithms?

Thank You!