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Association Schemes

A association scheme of rank d is a finite set X together with a set of d + 1 nonempty
|X| x | X]| binary matrices A = {A; : 0 </ < d} that satisfy the following conditions:

Ao =1,

Ao+ AL+ --- Ay = J where J is the all-ones matrix,
A€ A= Al € A, and

AiA; = AA; = S0 pii(k)Ay for all 0 < i, j, k < d.

Lol

The coefficients p; j(k) € N are called the intersection numbers.
We say A is symmetric if A,-T = A; for all /.

Each associate A; for 1 < j < d is a regular simple graph of valency v;.

vvyyy

The matrix algebra 2 := Span{Ag, A1, ..., Ay} is called the Bose-Mesner algebra.



|dempotents

Given an association scheme A, there exists a canonical dual basis of primitive

idempotents Ey, Eq, ..., Eg > 0 that satisfy the following conditions:
_ 1
1. Ep= WJ'
2. B+ E1+---Eg=1,
3. E,EJ = (5,‘JE,‘ for all 0 < I,_j < d, and
4. EioEj = Z?:o qi j(k)Ex where o denotes the Hadamard (entrywise) product.

» The coefficients g; j(k) € R>q are called the Krein parameters.

» Each primitive idempotent E; is the orthogonal projector onto the i-eigenspace.

» Moreover, we call m; := Tr E; the multiplicity of the i-eigenspace (i.e., dimension).



Eigenmatrices

Since Ag, A1, -+ ,Aq and Eg, Eq, - -+, Eq are bases, there exist p;(j), qj(i/) such that
T
Ai=> pi())E and E = x| iZ;qj(i)A,- forall 0 <i,j <d.

There exist (d + 1) x (d + 1) change-of-basis matrices P, Q defined such that
PJ'J = p;(j) and Q;J = qj(i)
called the first and second eigenmatrices of A, that is, PQ = |X|I = QP.

» The p;(j)'s are the eigenvalues of A (i.e., A;E; = p;(j)Ej).
» The g;(i)'s are the dual eigenvalues of A (i.e., Aj o Ej = q;j(i)A)).



The Hamming Scheme
Let X = {1,2,---,q}?. Let d(x,y) denote the Hamming distance between x,y € X.

For all 0 </ < d, define the | X| x |X| matrix A; such that
1 if d(x,y)=1

Ayl = o)

0 otherwise.

The matrices Hg g = {A; : 0 < i < d} form the Hamming (association) scheme.

A1 € Hap



The Hamming Scheme
Let X = {1,2,---,q}9. Let d(x,y) denote the Hamming distance between x,y € X.

For all 0 </ < d, define the | X| x |X| matrix A; such that
1 if d(x,y)=1
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0 otherwise.
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The Hamming Scheme

The dual eigenvalues of H4 4 are given by the classical Krawtchouk polynomials:

01=3 () (4o

j=1
In particular, Q;x = ¢x(i). For d =3 and g = 2, we have

1 3 3 1
1 1 -1 -1
@= 1 -1 -1 1
1 -3 3 -1

Conversely, the eigenvalues of Hy 4 are given by the dual Krawtchouk polynomials.



The Johnson Scheme
Let X = (i) be the collection of k-sets of [n] := {1,2,--- ,n}.

For all 0 < i < k, define the | X]| x | X| matrix A; such that
1 if I xNy|l=k—1i
Alxy] = { xny|
0 otherwise.

The matrices J, x = {A; : 0 < i < d} form the Johnson (association) scheme.

AL € T5



The Johnson Scheme

The eigenvalues of 7, , are given by the classical Eberlein polynomials:

=2 ()0

J=

In particular, Pp; = E/(i).

Conversely, the dual eigenvalues of 7, are given by the dual Eberlein polynomials.



Delsarte’s Approach

Let G; be the v-regular graph associated to A;. Let Y C X. Let y € R9*1 such that

2|E(G[Y]) ( 1YA,-1$> .
yi = = forall 0<i<d.
Y] Y]

> yo=1,
» y; >0 for all i, and
> yo+yi+-+ya=1Yl

We call y the distribution vector of Y.

Placing more structure on the set Y can give more linear constraints on y.



Delsarte’s Approach

In the Hamming scheme, pick Y C X to be the codewords of a certain type of code.
For example, if we want Y to be codewords of distance r, then we must have
n=y=--=y-1=0

Delsarte's observation is that second eigenmatrix @ places (d + 1) linear inequalities
that must hold for any distribution vector y of a set Y in an association scheme, i.e.,

yQ > 0.



The Delsarte LP

The linear program (DLP) below is Delsarte’s LP and holds for any association scheme.

(DLP) maximize 3% y; subject to
> =1
> yQ =0,
> yi=0forall1<i<r,
> y;>0forall r <i<d.

Since Z?:o yi =Y/, this gives an upper bound on the size of any distance-r code.

n

Delsarte proved (DLP) < — g1 i.e., the Hamming/sphere-packing bound.

Zk:() (Z)(q_]-)k '



DLP (n=d,q=2,0=r)

n | 4 | Hamming Bound | Linear Programming Bound
1113 170.7 170.7
115 30.6 24
1|7 8.8 4
1213 315.1 202.6
1215 51.9 10
12| 7 13.7 5.3
1313 585.1 512
1315 89.0 64
137 21.7 8
1413 1092.3 1024
1415 154.6 128
147 349 16
1513 2048 2048
1515 270.8 256
15| 7 56.9 32




Better Bounds?

(DLP) works within the Bose-Mesner algebra 20 — a commutative matrix algebra.

There is a larger matrix algebra coming from an association scheme A called the
Terwilliger algebra T of A — a typically non-commutative matrix algebra.

Also, 2 C T, so working harder (e.g., solving SDPs) over T may give better bounds.

Schrijver used the Terwilliger algebra of Hg o and 7, x to improve the state-of-the-art
bounds on binary codes and constant-weight binary codes.

Gijswijt et al. (arXiv:1005.4959) extend these results using SDP symmetry reduction.



Asymptotics? Linear Codes?

Assume g =2 and let § € (0,1). An asymptotic measure of rate estimated by DLP is

imsup 082 PPt py o 5y,

n—oo n

The latter bound is due to McEliece, Rodemich, Rumsey, and Welch (see also Navon
and Samorodnitsky), and remains best for § > 0.273.



Asymptotics? Linear Codes?

Assume g =2 and let § € (0,1). An asymptotic measure of rate estimated by DLP is

imsup 082 PPt py o 5y,

n—oo n

The latter bound is due to McEliece, Rodemich, Rumsey, and Welch (see also Navon
and Samorodnitsky), and remains best for § > 0.273.

Recall that (DLP) gives bounds on any code.

Can one extend (DLP) to prove bounds on the sizes of linear codes?

» Loyfer and Linial (arXiv:2206.09211)
» Coregliano, Jeronimo, and Jones (arXiv:2211.01248)



Delsarte’s Approach

Delsarte’s approach gives a unified framework that unites coding and design theory.

codes <+— cliques in association schemes <— combinatorial designs
Hd,q

other schemes

We call these designs codes if they arise from a communication problem.

Many association schemes:
» Abelian groups: Zp, Z3, etc..
non-Abelian groups: S,, A,, GL(n, q), etc..

Constant weight codes over non-binary alphabets (non-binary Johnson scheme)

Rooted d-ary trees

>
>
» Finite Geometries
>
» Perfect Matchings of K>,
>



Permutation Codes

Let S, be the symmetric group, i.e., the set of all permutations of [n].

Two permutations 7,0 € S, agree on the symbol i € [n] if 7(i) = o(i).

We say m,0 € S, have (Hamming) distance d if they agree on exactly n — d symbols.
Clearly any two distinct permutations have Hamming distance at least 2.

A distance-d permutation code is a set C C S, such that d(o,7) > d for all o, 7 € C.

Let M(n, d) denote the maximum size of a distance-d permutation code of Sj,.



The Permutation Scheme
The cycle types of permutations of S, correspond to integer partitions A+ n, e.g.,
(1234)(675)(89) € Sip has cycle type  (4,3,2,1) - 10.
Let Ay be the n! x n! matrix defined such that

1 the cycle type of o1 is \;

AA[ﬂ',O'] = {

0 otherwise.

The matrices S, = {Ax}xr-n form the permutation (association) scheme of order n.

» The valencies vy are the sizes of the A-conjugacy classes Cy of S,

» The E)'s are the 1 -projections onto the A-isotypic components of CS,,.

» The first eigenmatrix P of S, is essentially the group character table of S,.
» In (DLP), for distance-d codes we set yy = 0 if A has more than n —d 1's.



M(n,n) = n

A distance-n permutation code is a well-known design: the latin square of order n.




M(n,n—1)= 7

A largest distance-(n — 1) permutation code is a design: the projective plane of order n.

Infamous open question (even just for n = 12).



An Easier Scheme?

Difficult to make progress on permutation codes for arbitrary n and d.

Is there a scheme that somehow lies “in between” the Hamming/Johnson schemes and
the permutation scheme?

{Haqo Tnk} +— 77 +— S,
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Injections
For all k < n, let Si , be the set of all injective maps o : [k] — [n].

|Sknl = (Mk :=n(n—1)---(n—k+1)



Injections
For all k < n, let Si , be the set of all injective maps o : [k] — [n].

|Sknl = (Mk :=n(n—1)---(n—k+1)

Graphically, they are maximum matchings of Ky .

(:).....“‘< : )
: ast ¥a,, :

Example: e = 123, o = 215.



Cycle-Path Type
Let e = 12--- k € 5¢ , be the identity injection and o € Sy ,.

e U o = disjoint even-length cycles and even-length paths.

Example: e = (), o = (1,2)(3,5], and o' = (1,4](2,5](3,6].




Cycle-Path Type

Let e = 12--- k € Sy , be the identity injection and o € Sy .



Cycle-Path Type

Let e =12--- k € 5k, be the identity injection and o € Sy .

Let A and p be integer partitions that record the sizes of the cycle components and
path components respectively.
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Let |A| denote the size of an integer partition, and let and ¢(p) denote the length of an
integer partition, i.e., the number of parts.



Cycle-Path Type

Let e =12--- k € 5k, be the identity injection and o € Sy .

Let A and p be integer partitions that record the sizes of the cycle components and
path components respectively.

Let |A| denote the size of an integer partition, and let and ¢(p) denote the length of an
integer partition, i.e., the number of parts.

e U o isomorphism types «— (A|p) such that || + |p| = k and £(p) < n—k

Let Cx|p) € Sk, be the set of all injections that have cycle-path type (A|p).



Cycle-Path Type

e U o isomorphism types «— (A, p) such that |A| + [p| = k and ¢(p) < n—k

Example: e € Cii3jp), 0 € Ciapy, 0" € Cloppy)-




Cycle-Path Classes Cy)

Note that

So= L G-

Aol =k
Up)<n—k



Cycle-Path Classes Cy)

Note that

Sen= || Cow
I\|+pl=K

£(p)<n—k
Let A = (0%, 1%,... k%) and p = (0,17, .-, k'*). Then
ki(n— k)!
TTe g ittt

When k = n, we recover the well-known formula for the size of a conjugacy class of S,,.

[Cpy | =



The Injection Scheme

For all k < n, the injection scheme Sy p, := {A(5|p)} is the defined such that

. 1 if iUj = (Ap);
A(/\lp)[’aJ]:{O (Ale)

otherwise.
for all injections i, € S , and cycle-path types (A|p).
The E(y,)'s are L-projectors onto certain irreducible representations of Sy x Sy.

Example: k=3, n=7

x|x]

(212,1)



The Injection Scheme

For all k < n, the injection scheme Sy p, := {A(5|p)} is the defined such that

. 1 if iUj = (Ap);
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otherwise.
for all injections i, € S , and cycle-path types (A|p).
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The Injection Scheme

For all k < n, the injection scheme Sy p, := {A(5|p)} is the defined such that

. 1 if iUj = (Ap);
A(/\lp)[’aJ]:{O (Ale)

otherwise.
for all injections i, € S , and cycle-path types (A|p).
The E(y,)'s are L-projectors onto certain irreducible representations of Sy x Sy.

Example: k=3, n=7

x| x] [x[xx]
X x [ x[x]

(212,1) (12) (21)



The Injection Scheme

For all k < n, the injection scheme Sy p, := {A(5|p)} is the defined such that

. 1 if iUj = (Ap);
A(/\lp)[’aJ]:{O (Ale)

otherwise.
for all injections i, € S , and cycle-path types (A|p).
The E(y,)'s are L-projectors onto certain irreducible representations of Sy x Sy.

Example: k=3, n=7

x|x] [x]x[x]
X x| x[x] [x]x[x[x]

(212,1) (12) (21) @1]2)



The Injection Scheme
Some basic facts ..
> V(o) = |C(A\p |
» m(y|,) = the dimension of corresponding irreducible representation of Sy x Sp.
» A simultaneous generalization of Sy and J,, i.e., Sk and J, x are subschemes.



The Injection Scheme
Some basic facts ..
> V(alo) = [Calo) ‘
» m(y|,) = the dimension of corresponding irreducible representation of Sy x Sp.
» A simultaneous generalization of Sy and J,, i.e., Sk and J, x are subschemes.

. but many hard questions remain:

» Are there “good” formulas for computing the entries of the eigenmatrices P, Q?
This is an old question of Persi Diaconis and Andy Greenhalgh.

» Are there “good” formulas for computing the Krein parameters g; j(k)?
This turns out to have applications to Quantum Query Complexity.



The Injection Scheme
Some basic facts ..
> V(alo) = [Calo) ‘
» m(y|,) = the dimension of corresponding irreducible representation of Sy x Sp.
» A simultaneous generalization of Sy and J,, i.e., Sk and J, x are subschemes.

. but many hard questions remain:

» Are there “good” formulas for computing the entries of the eigenmatrices P, Q?
This is an old question of Persi Diaconis and Andy Greenhalgh.

» Are there “good” formulas for computing the Krein parameters g; j(k)?
This turns out to have applications to Quantum Query Complexity.

We give a “decent” formula for computing the P matrix in the following work:

P. J. Dukes, F. lhringer and N. Lindzey, “On the Algebraic Combinatorics of Injections and its
Applications to Injection Codes,” in IEEE Transactions on Information Theory, vol. 66, no. 11,
pp. 6898-6907, Nov. 2020.
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Injection Codes
Dukes '12

An n-ary injection code of length k and min. distance d is a set C C Sy , such that
any two elements have Hamming distance > d.

For example, 31465 € S5 and 21463 € S5 6 have Hamming distance 2.
Let M(n, k,d) be the maximum size of C.
M(n, k, k) = n (Latin Rectangles).

Little known about M(n, k, d) even for small k, n as Q-matrix was essentially unknown.



(DLP) for the Injection Scheme

Recall that Q = (n)xP~! is the dual eigenmatrix (which we can now compute!).

(DLP) maximize Z(Alp) Y(Alp) Subject to
> YKoy =1
> yQ =0,
> Y(xlp) = 0 for all A with more than k —d 1’s,
> y(xp) = 0 for all remaining cycle-path types.



Upper bounds on M(n, k, d) via (DLP)

Dukes, lhringer, Lindzey '19

n k d MK n k d M <
7 6 4 199 11 9 4 256682
8 6 3 1513 5 47073
7 4 1462 10 4 936332

9 7 4 2846 5 185560
8 4 12096 6 42068

5 2417 12 8 3 602579

10 7 3 27308 9 4 584327
8 4 26206 10 4 2699260

5 5039 5 471981

9 4 02418 11 4 10241521

5 19158 5 1922527

6 4991 6 411090

11 8 4 52646 13 ' 9 4 1185053



Upper bounds on M(n, k, d) via (DLP)
Dukes, lhringer, Lindzey '19

n k M <

13 12 123235550
23347599
4687470
910371
1621775700
309490273
58903464
10510496
2117618
23358981663
4130012797
804830167
138132435
24260981

14 13

15 14

WO NO O~ OONOO S NO G Q.
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