Association Schemes and Injection Codes

Nathan Lindzey (Technion)
Joint work w/ Peter Dukes and Ferdinand Ihringer

December 18, 2022

Association Schemes

The Injection Scheme

Injection Codes

Table of Contents

Association Schemes

The Injection Scheme

Injection Codes

Association Schemes

A association scheme of rank d is a finite set X together with a set of $d+1$ nonempty $|X| \times|X|$ binary matrices $\mathcal{A}=\left\{A_{i}: 0 \leq i \leq d\right\}$ that satisfy the following conditions:

1. $A_{0}=I$,
2. $A_{0}+A_{1}+\cdots A_{d}=J$ where J is the all-ones matrix,
3. $A_{i} \in \mathcal{A} \Rightarrow A_{i}^{T} \in \mathcal{A}$, and
4. $A_{i} A_{j}=A_{j} A_{i}=\sum_{i=0}^{d} p_{i, j}(k) A_{k}$ for all $0 \leq i, j, k \leq d$.

- The coefficients $p_{i, j}(k) \in \mathbb{N}$ are called the intersection numbers.
- We say \mathcal{A} is symmetric if $A_{i}^{\top}=A_{i}$ for all i.
- Each associate A_{i} for $1 \leq i \leq d$ is a regular simple graph of valency v_{i}.
- The matrix algebra $\mathfrak{A}:=\operatorname{Span}\left\{A_{0}, A_{1}, \ldots, A_{d}\right\}$ is called the Bose-Mesner algebra.

Idempotents

Given an association scheme \mathcal{A}, there exists a canonical dual basis of primitive idempotents $E_{0}, E_{1}, \ldots, E_{d} \succeq 0$ that satisfy the following conditions:

1. $E_{0}=\frac{1}{|X|} J$,
2. $E_{0}+E_{1}+\cdots E_{d}=I$,
3. $E_{i} E_{j}=\delta_{i, j} E_{i}$ for all $0 \leq i, j \leq d$, and
4. $E_{i} \circ E_{j}=\sum_{i=0}^{d} q_{i, j}(k) E_{k}$ where \circ denotes the Hadamard (entrywise) product.

- The coefficients $q_{i, j}(k) \in \mathbb{R}_{\geq 0}$ are called the Krein parameters.
- Each primitive idempotent E_{i} is the orthogonal projector onto the i-eigenspace.
- Moreover, we call $m_{i}:=\operatorname{Tr} E_{i}$ the multiplicity of the i-eigenspace (i.e., dimension).

Eigenmatrices

Since $A_{0}, A_{1}, \cdots, A_{d}$ and $E_{0}, E_{1}, \cdots, E_{d}$ are bases, there exist $p_{i}(j), q_{j}(i)$ such that

$$
A_{i}=\sum_{j=0}^{d} p_{i}(j) E_{j} \quad \text { and } \quad E_{j}=\frac{1}{|X|} \sum_{i=0}^{d} q_{j}(i) A_{i} \quad \text { for all } 0 \leq i, j \leq d
$$

There exist $(d+1) \times(d+1)$ change-of-basis matrices P, Q defined such that

$$
P_{j, i}:=p_{i}(j) \quad \text { and } \quad Q_{i, j}:=q_{j}(i)
$$

called the first and second eigenmatrices of \mathcal{A}, that is, $P Q=|X| I=Q P$.

- The $p_{i}(j)$'s are the eigenvalues of \mathcal{A} (i.e., $\left.A_{i} E_{j}=p_{i}(j) E_{j}\right)$.
- The $q_{j}(i)$'s are the dual eigenvalues of \mathcal{A} (i.e., $\left.A_{i} \circ E_{j}=q_{j}(i) A_{i}\right)$.

The Hamming Scheme

Let $X=\{1,2, \cdots, q\}^{d}$. Let $d(x, y)$ denote the Hamming distance between $x, y \in X$. For all $0 \leq i \leq d$, define the $|X| \times|X|$ matrix A_{i} such that

$$
A_{i}[x, y]:= \begin{cases}1 & \text { if } d(x, y)=i \\ 0 & \text { otherwise }\end{cases}
$$

The matrices $\mathcal{H}_{d, q}=\left\{A_{i}: 0 \leq i \leq d\right\}$ form the Hamming (association) scheme.

$A_{1} \in \mathcal{H}_{4,2}$

The Hamming Scheme

Let $X=\{1,2, \cdots, q\}^{d}$. Let $d(x, y)$ denote the Hamming distance between $x, y \in X$. For all $0 \leq i \leq d$, define the $|X| \times|X|$ matrix A_{i} such that

$$
A_{i}[x, y]:= \begin{cases}1 & \text { if } d(x, y)=i \\ 0 & \text { otherwise }\end{cases}
$$

The matrices $\mathcal{H}_{d, q}=\left\{A_{i}: 0 \leq i \leq d\right\}$ form the Hamming (association) scheme.

$A_{1} \in \mathcal{H}_{4,2}$

The Hamming Scheme

The dual eigenvalues of $\mathcal{H}_{d, q}$ are given by the classical Krawtchouk polynomials:

$$
\phi_{k}(x)=\sum_{j=1}^{k}\binom{x}{j}\binom{d-x}{k-j}(-1)^{j}(q-1)^{k-j} .
$$

In particular, $Q_{i, k}=\phi_{k}(i)$. For $d=3$ and $q=2$, we have

$$
Q=\left[\begin{array}{cccc}
1 & 3 & 3 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 \\
1 & -3 & 3 & -1
\end{array}\right]
$$

Conversely, the eigenvalues of $\mathcal{H}_{d, q}$ are given by the dual Krawtchouk polynomials.

The Johnson Scheme

Let $X=\binom{[n]}{k}$ be the collection of k-sets of $[n]:=\{1,2, \cdots, n\}$.
For all $0 \leq i \leq k$, define the $|X| \times|X|$ matrix A_{i} such that

$$
A_{i}[x, y]:= \begin{cases}1 & \text { if }|x \cap y|=k-i \\ 0 & \text { otherwise. }\end{cases}
$$

The matrices $\mathcal{J}_{n, k}=\left\{A_{i}: 0 \leq i \leq d\right\}$ form the Johnson (association) scheme.

$$
\underline{A_{1} \in \mathcal{J}_{5,2}}
$$

The Johnson Scheme

The eigenvalues of $\mathcal{J}_{n, k}$ are given by the classical Eberlein polynomials:

$$
E_{\ell}(x)=\sum_{j=0}^{\ell}(-1)^{j}\binom{x}{j}\binom{k-x}{\ell-j}\binom{n-k-x}{\ell-j}
$$

In particular, $P_{\ell, i}=E_{\ell}(i)$.
Conversely, the dual eigenvalues of $\mathcal{J}_{n, k}$ are given by the dual Eberlein polynomials.

Delsarte's Approach

Let G_{i} be the v_{i}-regular graph associated to A_{i}. Let $Y \subseteq X$. Let $y \in \mathbb{R}^{d+1}$ such that

$$
y_{i}=\frac{2\left|E\left(G_{i}[Y]\right)\right|}{|Y|}\left(=\frac{1_{Y} A_{i} 1_{Y}^{\top}}{|Y|}\right) \quad \text { for all } \quad 0 \leq i \leq d
$$

- $y_{0}=1$,
- $y_{i} \geq 0$ for all i, and
- $y_{0}+y_{1}+\cdots+y_{d}=|Y|$.

We call y the distribution vector of Y.
Placing more structure on the set Y can give more linear constraints on y.

Delsarte's Approach

In the Hamming scheme, pick $Y \subseteq X$ to be the codewords of a certain type of code.
For example, if we want Y to be codewords of distance r, then we must have

$$
y_{1}=y_{2}=\cdots=y_{r-1}=0 .
$$

Delsarte's observation is that second eigenmatrix Q places $(d+1)$ linear inequalities that must hold for any distribution vector y of a set Y in an association scheme, i.e.,

$$
y Q \geq 0
$$

The Delsarte LP

The linear program (DLP) below is Delsarte's $L P$ and holds for any association scheme.
(DLP) maximize $\sum_{i=0}^{d} y_{i}$ subject to

- $y_{0}=1$
- $y Q \geq 0$,
- $y_{i}=0$ for all $1 \leq i<r$,
- $y_{i} \geq 0$ for all $r \leq i \leq d$.

Since $\sum_{i=0}^{d} y_{i}=|Y|$, this gives an upper bound on the size of any distance- r code.
Delsarte proved $(D L P) \leq \frac{q^{n}}{\sum_{k=0}^{[(n-1) / 2]}\binom{n}{k}(q-1)^{k}}$, i.e., the Hamming/sphere-packing bound.

$\operatorname{DLP}(n=d, q=2, \delta=r)$

n	δ	Hamming Bound	Linear Programming Bound
11	3	170.7	170.7
11	5	30.6	24
11	7	8.8	4
12	3	315.1	292.6
12	5	51.9	40
12	7	13.7	5.3
13	3	585.1	512
13	5	89.0	64
13	7	21.7	8
14	3	1092.3	1024
14	5	154.6	128
14	7	34.9	16
15	3	2048	2048
15	5	270.8	256
15	7	56.9	32

Better Bounds?

(DLP) works within the Bose-Mesner algebra \mathfrak{A} - a commutative matrix algebra.
There is a larger matrix algebra coming from an association scheme \mathcal{A} called the Terwilliger algebra T of \mathcal{A} - a typically non-commutative matrix algebra.

Also, $\mathfrak{A} \subseteq \mathrm{T}$, so working harder (e.g., solving SDPs) over T may give better bounds.
Schrijver used the Terwilliger algebra of $\mathcal{H}_{d, 2}$ and $\mathcal{J}_{n, k}$ to improve the state-of-the-art bounds on binary codes and constant-weight binary codes.

Gijswijt et al. (arXiv:1005.4959) extend these results using SDP symmetry reduction.

Asymptotics? Linear Codes?

Assume $q=2$ and let $\delta \in(0,1)$. An asymptotic measure of rate estimated by DLP is

$$
\limsup _{n \rightarrow \infty} \frac{\log _{2}(D L P)_{n,\lfloor\delta n\rfloor}}{n} \leq H(1 / 2-\sqrt{\delta(1-\delta)})
$$

The latter bound is due to McEliece, Rodemich, Rumsey, and Welch (see also Navon and Samorodnitsky), and remains best for $\delta \geq 0.273$.

Asymptotics? Linear Codes?

Assume $q=2$ and let $\delta \in(0,1)$. An asymptotic measure of rate estimated by DLP is

$$
\limsup _{n \rightarrow \infty} \frac{\log _{2}(D L P)_{n,\lfloor\delta n\rfloor}}{n} \leq H(1 / 2-\sqrt{\delta(1-\delta)}) .
$$

The latter bound is due to McEliece, Rodemich, Rumsey, and Welch (see also Navon and Samorodnitsky), and remains best for $\delta \geq 0.273$.

Recall that (DLP) gives bounds on any code.
Can one extend (DLP) to prove bounds on the sizes of linear codes?

- Loyfer and Linial (arXiv:2206.09211)
- Coregliano, Jeronimo, and Jones (arXiv:2211.01248)

Delsarte's Approach

Delsarte's approach gives a unified framework that unites coding and design theory.
$\underbrace{\text { codes }}_{\mathcal{H}_{d, q}} \longleftrightarrow$ cliques in association schemes $\longleftrightarrow \underbrace{\text { combinatorial designs }}_{\text {other schemes }}$

We call these designs codes if they arise from a communication problem.
Many association schemes:

- Abelian groups: $\mathbb{Z}_{p}, \mathbb{Z}_{2}^{n}$, etc..
- non-Abelian groups: $S_{n}, A_{n}, G L(n, q)$, etc..
- Constant weight codes over non-binary alphabets (non-binary Johnson scheme)
- Finite Geometries
- Rooted d-ary trees
- Perfect Matchings of $K_{2 n}$
-

Permutation Codes

Let S_{n} be the symmetric group, i.e., the set of all permutations of $[n]$.
Two permutations $\pi, \sigma \in S_{n}$ agree on the symbol $i \in[n]$ if $\pi(i)=\sigma(i)$.
We say $\pi, \sigma \in S_{n}$ have (Hamming) distance d if they agree on exactly $n-d$ symbols.
Clearly any two distinct permutations have Hamming distance at least 2.
A distance-d permutation code is a set $C \subseteq S_{n}$ such that $d(\sigma, \pi) \geq d$ for all $\sigma, \pi \in C$.
Let $M(n, d)$ denote the maximum size of a distance- d permutation code of S_{n}.

The Permutation Scheme

The cycle types of permutations of S_{n} correspond to integer partitions $\lambda \vdash n$, e.g.,

$$
(1234)(675)(89) \in S_{10} \quad \text { has cycle type } \quad(4,3,2,1) \vdash 10 .
$$

Let A_{λ} be the $n!\times n!$ matrix defined such that

$$
A_{\lambda}[\pi, \sigma]= \begin{cases}1 & \text { the cycle type of } \sigma \pi^{-1} \text { is } \lambda ; \\ 0 & \text { otherwise } .\end{cases}
$$

The matrices $\mathcal{S}_{n}=\left\{A_{\lambda}\right\}_{\lambda \vdash n}$ form the permutation (association) scheme of order n.

- The valencies v_{λ} are the sizes of the λ-conjugacy classes C_{λ} of S_{n}
- The E_{λ} 's are the \perp-projections onto the λ-isotypic components of $\mathbb{C} S_{n}$.
- The first eigenmatrix P of \mathcal{S}_{n} is essentially the group character table of S_{n}.
- In (DLP), for distance- d codes we set $y_{\lambda}=0$ if λ has more than $n-d$ 1's.
$M(n, n)=n$
A distance- n permutation code is a well-known design: the latin square of order n.

$M(n, n-1)=?$

A largest distance- $(n-1)$ permutation code is a design: the projective plane of order n.

Infamous open question (even just for $n=12$).

An Easier Scheme?

Difficult to make progress on permutation codes for arbitrary n and d.
Is there a scheme that somehow lies "in between" the Hamming/Johnson schemes and the permutation scheme?

$$
\left\{\mathcal{H}_{d, q}, \mathcal{J}_{n, k}\right\} \quad \longleftrightarrow ? ? \quad \longleftrightarrow \mathcal{S}_{n} .
$$

Table of Contents

Association Schemes

The Injection Scheme

Injection Codes

Injections

For all $k \leq n$, let $S_{k, n}$ be the set of all injective maps $\sigma:[k] \rightarrow[n]$.

$$
\left|S_{k, n}\right|=(n)_{k}:=n(n-1) \cdots(n-k+1)
$$

Injections

For all $k \leq n$, let $S_{k, n}$ be the set of all injective maps $\sigma:[k] \rightarrow[n]$.

$$
\left|S_{k, n}\right|=(n)_{k}:=n(n-1) \cdots(n-k+1)
$$

Graphically, they are maximum matchings of $K_{k, n}$.
Example: $e=123, \sigma=215$.

Cycle-Path Type

Let $e=12 \cdots k \in S_{k, n}$ be the identity injection and $\sigma \in S_{k, n}$.

$$
e \cup \sigma \cong \text { disjoint even-length cycles and even-length paths. }
$$

Example: $e=(), \sigma=(1,2)(3,5]$, and $\sigma^{\prime}=(1,4](2,5](3,6]$.

Cycle-Path Type

Let $e=12 \cdots k \in S_{k, n}$ be the identity injection and $\sigma \in S_{k, n}$.

Cycle-Path Type

Let $e=12 \cdots k \in S_{k, n}$ be the identity injection and $\sigma \in S_{k, n}$.
Let λ and ρ be integer partitions that record the sizes of the cycle components and path components respectively.

Cycle-Path Type

Let $e=12 \cdots k \in S_{k, n}$ be the identity injection and $\sigma \in S_{k, n}$.
Let λ and ρ be integer partitions that record the sizes of the cycle components and path components respectively.

Let $|\lambda|$ denote the size of an integer partition, and let and $\ell(\rho)$ denote the length of an integer partition, i.e., the number of parts.

Cycle-Path Type

Let $e=12 \cdots k \in S_{k, n}$ be the identity injection and $\sigma \in S_{k, n}$.
Let λ and ρ be integer partitions that record the sizes of the cycle components and path components respectively.

Let $|\lambda|$ denote the size of an integer partition, and let and $\ell(\rho)$ denote the length of an integer partition, i.e., the number of parts.
$e \cup \sigma$ isomorphism types $\longleftrightarrow(\lambda \mid \rho)$ such that $|\lambda|+|\rho|=k$ and $\ell(\rho) \leq n-k$

Let $C_{(\lambda \mid \rho)} \subseteq S_{k, n}$ be the set of all injections that have cycle-path type $(\lambda \mid \rho)$.

Cycle-Path Type

$e \cup \sigma$ isomorphism types $\longleftrightarrow(\lambda, \rho)$ such that $|\lambda|+|\rho|=k$ and $\ell(\rho) \leq n-k$ Example: $e \in C_{\left(1^{3} \mid \varnothing\right)}, \sigma \in C_{(2 \mid 1)}, \sigma^{\prime} \in C_{\left(\varnothing \mid 1^{3}\right)}$.

Cycle-Path Classes $C_{(\lambda \mid \rho)}$

Note that

$$
S_{k, n}=\bigsqcup_{\substack{|\lambda|+|\rho|=k \\ \ell(\rho) \leq n-k}} C_{(\lambda \mid \rho)} .
$$

Cycle-Path Classes $C_{(\lambda \mid \rho)}$

Note that

$$
S_{k, n}=\bigsqcup_{\substack{|\lambda|+|\rho|=k \\ \ell(\rho) \leq n-k}} C_{(\lambda \mid \rho)}
$$

Let $\lambda=\left(0^{\ell_{0}}, 1^{\ell_{1}}, \cdots, k^{\ell_{k}}\right)$ and $\rho=\left(0^{r_{0}}, 1^{r_{1}}, \cdots, k^{r_{k}}\right)$. Then

$$
\left|C_{(\lambda \mid \rho)}\right|=\frac{k!(n-k)!}{\prod_{i=0}^{k} i^{\ell_{i}} \ell_{i}!r_{i}!}
$$

When $k=n$, we recover the well-known formula for the size of a conjugacy class of S_{n}.

The Injection Scheme

For all $k \leq n$, the injection scheme $\mathcal{S}_{k, n}:=\left\{A_{(\lambda \mid \rho)}\right\}$ is the defined such that

$$
A_{(\lambda \mid \rho)}[i, j]= \begin{cases}1 & \text { if } i \cup j \cong(\lambda \mid \rho) \\ 0 & \text { otherwise }\end{cases}
$$

for all injections $i, j \in S_{k, n}$ and cycle-path types $(\lambda \mid \rho)$.
The $E_{(\lambda \mid \rho)}$'s are \perp-projectors onto certain irreducible representations of $S_{k} \times S_{n}$.
Example: $k=3, n=7$

The Injection Scheme

For all $k \leq n$, the injection scheme $\mathcal{S}_{k, n}:=\left\{A_{(\lambda \mid \rho)}\right\}$ is the defined such that

$$
A_{(\lambda \mid \rho)}[i, j]= \begin{cases}1 & \text { if } i \cup j \cong(\lambda \mid \rho) ; \\ 0 & \text { otherwise } .\end{cases}
$$

for all injections $i, j \in S_{k, n}$ and cycle-path types $(\lambda \mid \rho)$.
The $E_{(\lambda \mid \rho)}$'s are \perp-projectors onto certain irreducible representations of $S_{k} \times S_{n}$.
Example: $k=3, n=7$

The Injection Scheme

For all $k \leq n$, the injection scheme $\mathcal{S}_{k, n}:=\left\{A_{(\lambda \mid \rho)}\right\}$ is the defined such that

$$
A_{(\lambda \mid \rho)}[i, j]= \begin{cases}1 & \text { if } i \cup j \cong(\lambda \mid \rho) \\ 0 & \text { otherwise }\end{cases}
$$

for all injections $i, j \in S_{k, n}$ and cycle-path types $(\lambda \mid \rho)$.
The $E_{(\lambda \mid \rho)}$'s are \perp-projectors onto certain irreducible representations of $S_{k} \times S_{n}$.
Example: $k=3, n=7$

The Injection Scheme

For all $k \leq n$, the injection scheme $\mathcal{S}_{k, n}:=\left\{A_{(\lambda \mid \rho)}\right\}$ is the defined such that

$$
A_{(\lambda \mid \rho)}[i, j]= \begin{cases}1 & \text { if } i \cup j \cong(\lambda \mid \rho) \\ 0 & \text { otherwise }\end{cases}
$$

for all injections $i, j \in S_{k, n}$ and cycle-path types $(\lambda \mid \rho)$.
The $E_{(\lambda \mid \rho)}$'s are \perp-projectors onto certain irreducible representations of $S_{k} \times S_{n}$.
Example: $k=3, n=7$

The Injection Scheme

Some basic facts

- $v_{(\lambda \mid \rho)}=\left|C_{(\lambda \mid \rho)}\right|$
- $m_{(\lambda \mid \rho)}=$ the dimension of corresponding irreducible representation of $S_{k} \times S_{n}$.
- A simultaneous generalization of \mathcal{S}_{k} and $\mathcal{J}_{n, k}$, i.e., \mathcal{S}_{k} and $\mathcal{J}_{n, k}$ are subschemes.

The Injection Scheme

Some basic facts

- $v_{(\lambda \mid \rho)}=\left|C_{(\lambda \mid \rho)}\right|$
- $m_{(\lambda \mid \rho)}=$ the dimension of corresponding irreducible representation of $S_{k} \times S_{n}$.
- A simultaneous generalization of \mathcal{S}_{k} and $\mathcal{J}_{n, k}$, i.e., \mathcal{S}_{k} and $\mathcal{J}_{n, k}$ are subschemes.
... but many hard questions remain:
- Are there "good" formulas for computing the entries of the eigenmatrices P, Q ? This is an old question of Persi Diaconis and Andy Greenhalgh.
- Are there "good" formulas for computing the Krein parameters $q_{i, j}(k)$? This turns out to have applications to Quantum Query Complexity.

The Injection Scheme

Some basic facts

- $v_{(\lambda \mid \rho)}=\left|C_{(\lambda \mid \rho)}\right|$
- $m_{(\lambda \mid \rho)}=$ the dimension of corresponding irreducible representation of $S_{k} \times S_{n}$.
- A simultaneous generalization of \mathcal{S}_{k} and $\mathcal{J}_{n, k}$, i.e., \mathcal{S}_{k} and $\mathcal{J}_{n, k}$ are subschemes.
... but many hard questions remain:
- Are there "good" formulas for computing the entries of the eigenmatrices P, Q ? This is an old question of Persi Diaconis and Andy Greenhalgh.
- Are there "good" formulas for computing the Krein parameters $q_{i, j}(k)$? This turns out to have applications to Quantum Query Complexity.

We give a "decent" formula for computing the P matrix in the following work:
P. J. Dukes, F. Ihringer and N. Lindzey, "On the Algebraic Combinatorics of Injections and its Applications to Injection Codes," in IEEE Transactions on Information Theory, vol. 66, no. 11, pp. 6898-6907, Nov. 2020.

Table of Contents

Association Schemes

The Injection Scheme

Injection Codes

Injection Codes

Dukes '12

An n-ary injection code of length k and min. distance d is a set $C \subseteq S_{k, n}$ such that any two elements have Hamming distance $\geq d$.

For example, $31465 \in S_{5,6}$ and $21463 \in S_{5,6}$ have Hamming distance 2 .
Let $M(n, k, d)$ be the maximum size of C.
$M(n, k, k)=n($ Latin Rectangles $)$.
Little known about $M(n, k, d)$ even for small k, n as Q-matrix was essentially unknown.

(DLP) for the Injection Scheme

Recall that $Q=(n)_{k} P^{-1}$ is the dual eigenmatrix (which we can now compute!).
(DLP) maximize $\sum_{(\lambda \mid \rho)} y_{(\lambda \mid \rho)}$ subject to

- $y_{(k \mid \varnothing)}=1$
- $y Q \geq 0$,
- $y_{(\lambda \mid \rho)}=0$ for all λ with more than $k-d$ 1's,
- $y_{(\lambda \mid \rho)} \geq 0$ for all remaining cycle-path types.

Upper bounds on $M(n, k, d)$ via (DLP)
Dukes, Ihringer, Lindzey '19

n	k	d	$M \leq$	n	k	d	$M \leq$
7	6	4	199	11	9	4	256682
8	6	3	1513			5	47073
	7	4	1462		10	4	936332
9	7	4	2846			5	185560
	8	4	12096			6	42068
		5	2417	12	8	3	602579
10	7	3	27308		9	4	584327
	8	4	26206		10	4	2699260
		5	5039			5	471981
	9	4	92418		11	4	10241521
		5	19158			5	1922527
		6	4991			6	411090
11	8	4	52646	13	9	4	1185053

Upper bounds on $M(n, k, d)$ via (DLP)
Dukes, Ihringer, Lindzey '19

n	k	d	$M \leq$
13	12	4	123235550
		5	23347599
		6	4687470
		7	910371
14	13	4	1621775700
		5	309490273
		6	58903464
		7	10510496
		8	2117618
15	14	4	23358981663
		5	4130012797
		6	804830167
		7	138132435
		8	24260981

