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Motivation



Linear Data Querying

Linear Data Querying

• A common query type in database systems involves a linear

combination of the database items with coefficients supplied by the

user.

• The database server - m items, x1, . . . , xm ∈ Fqℓ .

• The user queries the database by providing s1, . . . , sm ∈ Fq.

• The database returns the linear combination
∑m

i=1 sixi .

Examples

• Private information retrieval (PIR).

— see Chor, Goldreich, Kushilevitz and Sudan, IEEE Trans. on Inform. Theory, 1995.

• Partial-sum queries.

— see Chazelle and Rosenberg, Proceedings of the fifth annual symposium on Computational geometry,, 1989.
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Linear Data Querying (Cont.)

Aspects in need of optimization

• Amount of storage at the server.

• The required bandwidth for the querying protocol.

• Access Complexity - the time required to access the elements of the

database needed to compute the answer to a user query.

Access Complexity

• The time required is proportional to the number of non-zero

coefficients among s1, . . . , sm.

• In the PIR scheme the coefficients are uniform i.i.d variables over Fq

=⇒ The expected number of non-zero coefficients is
(
1− 1

q

)
m.
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Access Complexity and Storage

Reducing Access Complexity

• Design a set of linear combinations to be pre-computed and stored

by the server.

• Instead of storing x = (x1, . . . , xm) as is, the server stores

h1 · x , . . . , hn · x , where each hi ∈ Fm
q describes a linear combination.

Example

• If h1 · x , . . . , hn · x are all the possible linear combinations, the access

complexity drops to just one item per query.

• Problem: The required storage amount is qm instead of m.
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Access Complexity-Storage-Latency Trade-Off

Reducing Access Complexity

• Group Queries - instead of answering one query at the time -

accesses the combinations required for t ⩾ 1 queries together.

• Problem: This causes latency.

Example

• Assume that we have the combinations x1,x2,x3,x1 + x2, x3 − x2
pre-computed and stored

• The combinations x1 + x2 and x1 + x3 are queried.

• If we answer each query separately - we need 1 access for x1 + x2
and 2 elements of x1 + x3. Overall - access 3 database elements.

• If we answer both queries together - by accessing x1 + x2 and

x3 − x2, we may obtain

x3 + x1 = (x1 + x2) + (x3 − x2).

Save 1 access to the database.
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Access Complexity-Storage-Latency Trade-Off

Question

• Having the pre-computed linear combinations h1 · x , . . . , hn · x , how
many pre-computed combinations needs to be accessed in order to

answer t linear queries together?

• Namely, what is the minimal r such that any t coefficient vectors

s1, . . . , st can be computed as a linear combination of r ⩽ m of

h1, . . . , hn. That is, there exits ℓ1, . . . , ℓr , such that

s j =
∑r

i=1 αihℓi ? in that case, s j · x =
∑r

i=1 αi (hℓi · x)
• We define this number to be the t-th generalized covering radius of

the [n, n −m = k]q linear code generated by the parity matrix H

whose columns are h1, . . . , hn.
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The Generalized Covering Radius

Definition



The Generalized Covering Radius Definition

We may consider the vectors h1, . . . , hn as the columns of a parity-check

matrix H of some [n, n −m = k]q code C .

Definition

Let C be an [n, k]q linear code over Fq, given by an (n − k)× n

parity-check matrix H ∈ F(n−k)×n
q with columns h1, . . . , hn. For every

t ∈ N we define the t-th generalized covering radius, Rt(C ), to be the

minimal integer r ∈ N such that for every set of vectors

S = {s1, . . . , st} ⊆ Fn−k
q , there exists I ⊆ Fn−k

q , |I | = r such that

S ⊆ span
{
hi : i ∈ I

}
.

The Trade-Off as A Covering Problem

The smallest possible number of pre-computed combinations for

answering a group of t queries accessing r database elements is lower

bounded by the smallest possible length of a linear code with t-covering

radius r and redundancy m over Fq.
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The Generalized Covering Radius (Cont.)

Remarks

• For t = 1 we get the regular covering radius of a linear code.

• This definition does not depend on the choice of the parity check

matrix.

• For all 1 ⩽ t ⩽ n − k, t ⩽ Rt(C ).

• Monotonicity - R1(C ) ⩽ R2(C ) · · · ⩽ Rn−k(C ) = n − k .

Example

Let C be the binary [2m − 1, 2m −m − 1, 3] Hamming code. The

columns of the standard parity check matrix H are all the binary

non-zero vectors of length m. What is Rt(C ) for 1 ⩽ t ⩽ m?

Given t non-zero vectors in Fm
2 , they are all columns of H. Thus,

Rt(C ) ⩽ t. By the remark - Rt(C ) = t.
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Equivalent Definitions

t-Weights and t-distance

• For t ∈ N we define the t-weights on Ft×n
q . For a matrix v ∈ Ft×n

q

with row vectors v1, . . . , v t we define

wt(t)(v) ≜

∣∣∣∣∣∣
⋃

1⩽i⩽t

supp(v i )

∣∣∣∣∣∣, d (t)(v1, v2) ≜ wt(t)(v1 − v2).

• For a matrix v ∈ Ft×n
q we denote the ball or radius r centred in v

(with respect to d (t)) by B
(t)
r (v), and it volume by V

(t)
r ,n,q.

• If C ⊆ Fn
q is a linear code, we define C t to be the set of all matrices

in Ft×n
q such that their rows belongs in C .
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Equivalent Definitions(Cont.)

Geometric Definition

Let C be an [n, k]q code, we consider C t ⊆ Ft×n
q . Then Rt(C ) is the

regular covering radius of C t with respect to d (t):

Rt(C ) = min

{
r ∈ N :

⋃
c∈C t

B(t)
r (c) = Ft×n

q

}
.

Remark: This definition extends to general (perhaps non-linear) codes.

Algebraic Definition

Let C be an [n, k]q linear code. Assume G ∈ Fk×n
q is a generator matrix

for C . Let Ct be the linear code over Fqt generated by the same matrix

G . That is, Ct =
{
uG : u ∈ Fk

qt

}
. Then Rt(C ) = R1(Ct).

The algebraic definition is related to the work of Helleseth on extension

codes (1979).
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Asymptotic Results



Bounds

Definition

Let kt(n, r , q) denote the smallest dimension of a linear code C over Fq

with length n and t-covering radius Rt(C ) ⩽ r .

For a normalized covering radius 0 ⩽ ρ ⩽ 1, the minimal rate achieving

ρ is defined to be

κt(ρ, q) ≜ lim inf
n→∞

kt(n, ρn, q)

n
.

Lower Bound (Ball-Covering)

For ρ ∈
(
0, 1− 1

qt

)
,

κt(ρ, q) ⩾ 1− Hqt (ρ).
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A Naive Upper Bound

Theorem (A Naive Upper Bound)

For ρ ∈ [0, 1]

κt(ρ, q) ⩽ κ1

(ρ
t
, q

)
= 1− Hq

(ρ
t

)

Proof Sketch

We use a sub-additivity property:

For an [n, k]q linear code C and t1, t2 ∈ N,

Rt1+t2(C ) ⩽ Rt1(C ) + Rt2(C ).

As a consequence Rt(C ) ⩽ t · R1(C ).

We combine with a result by Cohen and Frankl (1985)

κ1(ρ, q) = 1− Hq(ρ).
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Improved Upper Bound for the binary case where t = 2

Theorem

For any 0 < ρ ⩽ 1,

κ2(ρ, 2) ⩽

{
1− (4H4(ρ)− f (ρ)) 0 ⩽ ρ < 3

4 ,

0 3
4 ⩽ ρ ⩽ 1,

where

f (ρ) =

H2(s(ρ)) + 2s(ρ) + 2(1− s(ρ))H2

(
ρ−s(ρ)
1−s(ρ)

)
0 ⩽ ρ < 3

4 ,

3 3
4 ⩽ ρ ⩽ 1.

and

s(ρ) ≜
1

10

(
1 + 8ρ−

√
1 + 16ρ− 16ρ2

)
.

12



A Comparison of The Bounds
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Improved Upper Bound for the binary case where t = 2

Proof Sketch

We use the probabilistic method.

Assume G ∈ Fk×n
2 is a uniformly

random matrix, and consider the code C 2 =
{
uG : u ∈ F2×k

2

}
. For

any v ∈ F2×n
2 , we count the number of times it is covered by balls of

radius r around codewords of C 2 that are generated by full-rank

matrices:

Xv ≜
∑

u∈F2×k
2

rank(u)=2

I{
v∈B

(2)
r (uG)

}.

Using a careful analysis we can determine that

V
(2)
r ,n,2 · 2

2k−1−2n < E[Xv] < V
(2)
r ,n,2 · 2

2k−2n,

Var(Xv) ⩽ 7 E[Xv] + 23(k−n)+n(f (ρ)+o(1)).

14
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Improved Upper Bound for the binary case where t = 2

Proof Sketch

The code is then constructed in two stages:

1. We choose

k = ⌈n(1− 4H4(ρ) + f (ρ)) + log2(n)⌉.

We then show the code obtained when G has k rows already covers

a large enough portion of the space.

2. We then successively add 2⌈log2(n)⌉+ 2 rows to G that to

guarantee the coverage of the entire space.

15
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Let us place this in the context of PIR

• Consider the binary case, and assume we allow a latency of t = 2,

namely, the server waits until two queries arrive and then handles

them both.

• r = ρn represents the number of database elements we allow to

access for answering 2 queries, k = n −m represents the overhead.

• Further assume, that to handle the two queries we allow the server

to access at most 1
2 of its storage. Stated alternatively, the average

access per query is a 1
4 of the storage.

• A naive approach, using κ1(
1
4 , 2) ≈ 0.19, implies the storage may

contain only 81% user information and 19% overhead.

• Since κ2(
1
2 , 2) ⩽ 0.11, there exists a code allowing 89% of the server

storage for user information and only 11% overhead.
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A step towards the calculation of κt(ρ, q)

Conjecture

We conjecture that the lower bound meets the true value of κt(ρ, q).

That is, For any 0 ⩽ ρ ⩽ 1,

κt(ρ, q) =

{
1− Hqt (ρ) 0 ⩽ ρ < 1− 1

qt ,

0 1− 1
qt ⩽ ρ ⩽ 1.

We know that it is true for t = 1(Cohen and Frankl 1985)

General codes

We recall that by the geometric definition, Rt is defined for any code -

Rt(C ) is the covering radius of C t ⊆ Ft×n
q with respect to d (t).

We define k̂t(n, r , q) to be the minimal dimension of a general code of

length n with t-covering radius at most r and

κ̂t(ρ, q) ≜ lim infn→∞
k̂t(n,ρn,q)

n .

We know that for any ρ and q, κ̂1(ρ, q) = κ1(ρ, q).

17
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A step towards the calculation of κt(ρ, q)

Theorem

1. For t = 2 and any q ∈ N and 0 ⩽ ρ ⩽ 1,

κ̂2(ρ, q) =

{
1− Hq2(ρ) 0 ⩽ ρ < 1− 1

q2 ,

0 1− 1
q2 ⩽ ρ ⩽ 1.

2. In fact - if αn(ε) fraction of codes with R2(C ) ⩽ ρn among codes of

length n and size ⌊qn(κ̂2(ρ,q)+ε)⌋, then αn(ε)→ 1 as n→∞.

Proof idea - construct a sequence of code codes using the probabilistic

method.

The Next Step

We know that for any ρ and q, κ̂1(ρ, q) = κ1(ρ, q). The next would be

to prove that:

κ̂2(ρ, q) = κ2(ρ, q).
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The Generalized Covering Radii

of Some Known Codes



Let’s start with the Hamming code

Theorem

Let C be the [n = qm−1
q−1 , k = qm−1

q−1 −m, 3] Hamming code over Fq.

Then for all 1 ⩽ t ⩽ m,

Rt(C ) = t.

Theorem

Let C be an [n, k ⩾ 1, d ⩾ 3] linear code over Fq. Then

R1 < R2 < . . . < Rn−k = n − k,

if and only if C is the q-ary Hamming code.

Proof.

Since Rn−k = n − k, we must have R1 = 1. But a linear code with

parameters [n, k, d ⩾ 3] with covering radius R1 = 1 is 1-perfect and it

must be the q-ary Hamming code.

19
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MDS codes have a very narrow hierarchy

Theorem (Gabidulin and Kløve, ITW, 1998)

Let C be a q-ary [n, k, n − k + 1] MDS code. Then its (regular)

covering radius is

R1(C ) = n − k or R1(C ) = n − k − 1.

Corollary

Let C be a q-ary [n, k, n−k+1] MDS code. Then for all 1 ⩽ t ⩽ n−k,

Rt(C ) = n − k or Rt(C ) = n − k − 1.

Proof.

Immediate given the monotonicity of the generalized covering radii.
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Reed-Muller codes might be interesting

Pros:

• They have a wide range of parameters.

• They have many equivalent definitions.

• They are useful in communications (attain capacity of symmetric

and erasure channels, and are connected to locally decodable codes,

probabilistic proof systems) and cryptography (connected to the

study of Boolean functions and sequence design).

— see Reeves and Pfister, arXiv, 2021, Kudekar et al., IEEE Trans. on Inform. Theory, 2017, Yekhanin, Now, 2012, Abbe et al., IEEE

Trans. on Inform. Theory, 2015, Kurosawa et al., IEEE Trans. on Inform. Theory, 2004, Schmidt, IEEE Trans. on Inform. Theory, 2007

Cons:

We don’t even know their exact covering radius!
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Here’s a brief reminder

We shall find it convenient to use the following recursive construction of

Reed-Muller codes:

Assume C1 and C2 are [n, k1]q and [n, k2]q codes, respectively. The

(u, u + v) construction uses C1 and C2 to produce a code

C = {(u, u + v) | u ∈ C1, v ∈ C2}.

Reed-Muller Code Construction

• RM(0,m) ≜
{
0, 1

}
⊆ F2m

2

• RM(m,m) ≜ F2m

2

• For 1 ⩽ r ⩽ m − 1, we define RM(r ,m) to be the code produced by

the (u, u + v) construction using RM(r ,m − 1) and

RM(r − 1,m − 1).
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Results

Exact values

We have calculated exact t-th covering radii of RM(r ,m) (denoted by

Rt(r ,m)) in some extreme cases:

Rt(0,m) 2m − ⌈2m−t⌉ Repetitions code

Rt(m − 2,m) min{t,m}+ 1 Extended Hamming code

Rt(m − 1,m) 1 Parity code

Rt(m,m) 0 Full code
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Results (cont.)

Bounds

We provide lower and upper bounds on Rt(r ,m) in various scenarios,

where m→∞:

1. RM(r ,m) where r is constant - the rate tends to 0 as m→∞.

2. RM(m − s,m) where s is constant - the rate tends to 1 as m→∞.

3. RM(αm,m) where α is constant:

• α < 1
2
- the rate tends to 0 as m → ∞

• α > 1
2
- the rate tends to 1 as m → ∞.

4. RM(r ,m) where r = 1
2m +Θ(

√
m) - the rate can converge to any

constant number in [0, 1].
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Results (cont.)

A small reminder before we look at the bounds

It all started from linear data querying!

with pre-computed linear combinations h1 · x , . . . , hn · x , Rt(C ) is the

minimal of number of pre-computed combinations that has to be

accessed in order to answer t linear queries.

Observations

• Given t linear queries - we can always answer each one separately.

=⇒ Rt(C ) ⩽ t · R1(C ) - and this linear relation holds when we do

not gain from grouping queries.

• Given a fixed number of database elemnts - m, the dimension of the

corresponding code is k = n −m, where n is number of

pre-computed linear combinations.

=⇒ Since we want to reduce the number of pre-computed linear

combinations - codes with low rate are desirable!
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A summary of the bounds

Rt(r ,m)
⩽

(
1 − 1

2t

)
2m −

√
2t−1

2t
(1 +

√
2)r−12m/2 + O(mr−2)

⩾
(
1 − 1

2t

)
2m −

√
2t(2t−1) ln 2

2t
√

r !
mr/22m/2(1 + o(1))

Rt(m − s,m)
⩽ t

(s−2)!m
s−2 + O(ms−3)

⩾ t
(s−1)!m

s−2 + O(ms−3 log(m))

Rt(αm,m)

⩽
(
1 − 1

2t

)
2m −

√
2t−1

2t (2+
√

2)
2
m
(
1
2
+α log2(1+

√
2)
)
(1 + o(1)) 0 < α < 1 − 1√

2

⩽
(
1 − 1

2t

)
2m −

√
2t−1

2t
· 1√

8mα(1−α)
· 2mH2(α) 1 − 1√

2
⩽ α < 1

2

⩽ t · 4H2(α) · 2mH2(α) · (1 + o(1)) 1
2 < α < 1

⩾
(
1 − 1

2t

)
2m −

√
2t(2t−1) ln 2

2t
· 2

m
2
(1+H2(α)) · (1 + o(1)) 0 < α < 1

2

⩾ t ·
√

1−α

8(αm)3
· 2mH2(α) · (1 + o(1)) 1

2 < α < 1

Rt(r ,m)
⩽

(
1 − 1

2t

)
2m −

√
2t−1

2t
2m√
1
2
mπ

e−
(m−2r)2

2m (1 + o(1)) ∑r
i=0

(m
i

)
= κ2m

⩾ H−1

2t
(1 − κ)2m(1 + o(1))
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Proofs Ideas - Lower Bounds

Algebraic definition of the generalized covering radius

Let C be an [n, k]q linear code. Assume G ∈ Fk×n
q is a generator matrix

for C . Let Ct be the linear code over Fqt generated by the same matrix

G . That is, Ct =
{
uG : u ∈ Fk

qt

}
. Then Rt(C ) = R1(Ct).

Lemma - ball-covering argument

For an [n, k]q code C and

logq
(
Vq,n,R1(C)

)
⩾ n − k,

where Vq,n,r denotes the volume of the Hamming ball of radius r in Fn
q.

Corollary

Applying on the ball-covering argument on Ct :

logqt

(
Vqt ,n,Rt(C)

)
= logqt

(
Vqt ,n,R1(Ct)

)
⩾ n − k.
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Proofs Ideas - Upper Bounds

Lemma

if a code C is produced using the (u, u + v) construction with C1 and

C2, then

Rt(C ) ⩽ Rt(C1) + Rt(C2).

Corollary

Since Reed-Muller codes are obtained from the (u, u + v) construction -

for any m ⩾ 2 and 1 ⩽ r ⩽ m − 1

Rt(r ,m) ⩽ Rt(r − 1,m − 1) + Rt(r ,m − 1).

Strategy

We upper bound the extreme cases and recursively apply the (u, u + v)

bounds. By careful analysis, we obtain our bounds in the considered

scenarios.

28



Proofs Ideas - Upper Bounds

Lemma

if a code C is produced using the (u, u + v) construction with C1 and

C2, then

Rt(C ) ⩽ Rt(C1) + Rt(C2).

Corollary

Since Reed-Muller codes are obtained from the (u, u + v) construction -

for any m ⩾ 2 and 1 ⩽ r ⩽ m − 1

Rt(r ,m) ⩽ Rt(r − 1,m − 1) + Rt(r ,m − 1).

Strategy

We upper bound the extreme cases and recursively apply the (u, u + v)

bounds. By careful analysis, we obtain our bounds in the considered

scenarios.

28



Proofs Ideas - Upper Bounds

Lemma

if a code C is produced using the (u, u + v) construction with C1 and

C2, then

Rt(C ) ⩽ Rt(C1) + Rt(C2).

Corollary

Since Reed-Muller codes are obtained from the (u, u + v) construction -

for any m ⩾ 2 and 1 ⩽ r ⩽ m − 1

Rt(r ,m) ⩽ Rt(r − 1,m − 1) + Rt(r ,m − 1).

Strategy

We upper bound the extreme cases and recursively apply the (u, u + v)

bounds. By careful analysis, we obtain our bounds in the considered

scenarios.

28



Let us go back to our motivating scenario

Assume a server stores linear combinations of the database items

according to the columns of a parity-check matrix H of RM(r ,m).

After translating the problem to a coding theoretic one:

Goal

Given t × 2m binary matrix in Ft×2m

2 , how can we find t × 2m codeword

in (RM(r ,m))t which is a “small” d (t) distance away from the given

matrix?

The optimal solution requires Rt(r ,m) distance.

Question

Can we find a solution that requires a distance that is no more than the

upper bounds we presented on Rt(r ,m)?
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Yes, we can!

Main Idea

• Our bounds are based on subadditivity:

Rt(r ,m) ⩽ Rt(r − 1,m − 1) + Rt(r ,m − 1).

• When receiving a t × 2m matrix in the space, recursively find nearby

codeword using (RM(r ,m − 1))t , and then use (RM(r − 1,m − 1))t

for the right half.

• The recursion is grounded in two base cases:

1. RM(m,m) is the entire space, and hence the nearest codeword are

the received matrix.

2. (RM(1,m))t is small enough to use a brute-force search to find the

best codeword.

• The time complexity: O(t2t(2t+1)m+1(2t+1 − 1)−r + tm2m).
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The algorithm is simple

Algorithm 1: A t-covering algorithm for RM(r ,m) with radius Ut(r ,m)

Function recursive(v, r)

Input : v ∈ Ft×2m

2 , r ∈ N, 1 ⩽ r ⩽ m

// Check edge cases

if r = m then return v

if r = 1 then return argminc∈RM(1,m)t d
(t)(v, c)

// Use the (u, u + v) recursion

Let v1, v2 ∈ Ft×2m−1

2 s.t. v = (v1, v2)

c1 ← recursive(v1, r)

c2 ← recursive(v2 − c1, r − 1)

return (c1, c1 + c2)
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Open Questions and Future Work

The generalized covering radius of linear codes is a completely new topic

and many interesting directions for future research remain. For example:

• Computing the generalized covering radius for known families of

codes.

• Improving the asymptotic bounds, and generalizing them.

• Constructing codes with a given t-covering radius.
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Thank you for your attention!
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